Петля гистерезиса в электротехнике

Содержание

Бытовой термостат

Здравствуйте. Обзор бытового термостата — устройства для поддержания постоянной температуры. В поиске на али много предложений, но это либо diy модули, либо встраиваемые, либо термостаты с ограниченным температурным интервалом для аквариумов. А вот таких как сабж очень мало… Термостат представляет собой конструктивно законченное изделие не требующее инсталляции. А по простому- включил в сеть и все заработало. Получил я его давно, поэтому упаковки уже нет. И лежал он у меня год, ждал своего часа, Но тут недавно прикупил я ветчинницу и вспомнил о покупке. Технические характеристики:

Рабочее напряжение: 90 В ~ 250 В Номинальный ток: 10A Мощность потребления: ≤ 3 w Мощность потребление стоял: ≤. 5 Вт Точность Контроль температуры: 0.1 градусов Разрешение: 0.1 градусов погрешность измерения: ± 3 градусов Управление диапазон:-40 ~ 120 градусов Поворотный диапазон Температура: 0.1 ~ 30 градусов Рабочая Температура:-20 ~ 70 градусов Рабочая влажность: 90% без конденсации Температурный датчик: NTC 25 градусов = 10 К B3435 ± 1%, длина провода датчика1.48 м Сетевой шнур 1.45 м реле: 10A/AC220V Размеры: 15.5*6*2.8 см/6.1*2.4 * 1.1in Вес: 245.2 г

Прибор собран в компактном корпусе из пластика. Имеет универсальную розетку и большой, яркий лед дисплей.


По бокам кнопки настройки


Индикация прекрасно видна с любого угла.


Сзади имеется гнездо для вертикального крепления.

Герметичный датчик температуры.


Маркировка на сетевом шнуре.


Настройка термостата. Длительно нажимается верхняя левая кнопка и правыми курсорными кнопками выбирается нужный режим С- срабатывание по нижней температуре,

Н- срабатывание по верхней температуре.


Далее короткими нажатиями верхней левой клавишей последовательно переключаемся, а курсорными справа настраиваем P1 максимальная температура


Р2 минимальная температура


Величина гистерезиса от 0,1 до 30 градусов. Гистерезис это диапазон температур отличающихся от установленной, чем меньше гистерезис, тем ближе температура к постоянной, тем больше срабатываний реле.


При нажатии левой нижней кнопки показатели сбрасываются… Возможности калибровки в этой модели наверное нет. При длительном нажатии левой нижней кнопки показания температурного датчика начинаю мигать, но изменить их нельзя.Немного напрягает установка нужной температуры. Дело в том, что шаг — 0,1 градуса и чтобы перевести прибор, например с 36 на 80 градусов нужно нажать кнопку 440 раз. Можно конечно так много не нажимать, а зажать кнопку, тогда показатели побегут, но очень неспешно. Заглянем внутрь


Коммутация производится электро-механическим реле JQC-3FF. При постоянной эксплуатации термостата это будет расходный материал. Смотрим — сколько стоит на али Стоит недорого и предложений много. Так, что с заменой реле проблем не будет. Теперь проверю термостат на практике — во время варки колбасы в ветчиннице. Сооружаю вот такую установку. Электрическую плитку подключаю к термостату, термостат в сеть. Датчик температуры помещаю в воду.


Для проверки устанавливаю спиртовый термометр. На всех уровнях температура совпадает с показаниями термостата. Температуру тающего льда показал ( — ) 0,2 градуса.

С открытой емкостью при выставленном гистерезисе 1,5 градуса термостат включался один раз в 8 минут. 2 минуты на нагревание, 6 минут на охлаждение. Если емкость с водой закрыть, цикл увеличивается до 15 минут- 2 минуты на нагревание, 13 минут на охлаждение. Еще следует учитывать, что вода будет нагреваться выше установленной на термостате температуры на 1 -1,5 градуса, за счет теплоемкости плитки, посуды, да и вода перемешивается не мгновенно. Поэтому гистерезис будет равен не 1,5, а 2,5 — 3 градусам. В заключении хочу сказать, что данный прибор весьма удобен и незаменим для любительского сыроварения, колбасоварения, самогоноварения, пивоварения, пастеризации и других процедур на кухне требующих постоянства температуры

Спасибо за внимание

Как сделать термореле своими руками

Для того чтобы смастерить терморегулятор, необходимо заранее подготовить корпус прибора и другие инструменты для работы

Для того, чтобы собрать надежный терморегулятор с датчиком следует:

  1. Подготовить корпус прибора. Для этих целей можно выбрать корпус от старого электрического счётчика, автоматического выключателя.
  2. Ко входу компаратора (помеченного знаком «+») подключить потенциометр, а минусовому инверсному входу – термодатчики типа LM335. Схема работы устройства достаточно простая. При повышении напряжения на прямом входе, транзистор подает питание на реле, а оно, в свою очередь, на нагреватель. Как только напряжение на обратном входе станет выше, чем на прямом, уровень на выходе компаратора приблизится к нулю, и реле отключится.
  3. Создать отрицательную связь между прямым входом и выходом. Это создаст пределы включения и отключения терморегулятора.

Для питания терморегулятора можно взять катушку от старого электромеханического электросчетчика. Для получения необходимого напряжения в 12 В, нужно будет намотать на катушку 540 витков. Для этого лучше всего использовать медный провод диаметром не менее 0,4 мм.

Термоизоляция моторного отсека в т.ч. термоодеялом не ускоряет прогрев двигателя.

Мои друзья спорили о термоизоляции. Один говорил, что термоизоляция моторного отсека (МО) влияет на скорость прогрева двигателя. Другой говорил, что не влияет. Я решил провести эксперимент. Утеплил моторный отсек и поставил жалюзи. В мороз в –25 °С поехал на работу и фиксировал температуру двигателя и МО. Жалюзи были плотно закрыты. На следующий день при той же температуре открыл капот и жалюзи и снова поехал на работу. Также записывал температуру двигателя и моторного отсека. Потом нарисовал графики.

Единственное, в данном вопросе нужно сначала определиться с термином прогрев. Если мы считаем, что прогрев это нагревание до температуры +50 °С ОЖ, то теплоизоляция однозначно не влияет на скорость прогрева. Если всё-таки мы считаем, что прогрев идет до максимальной температуры ОЖ, то выводы следующие:

1. От –25 °С до +50 °С скорость прогрева одинакова и утепление на нее не влияет.

2. От +50 °С до +70 °С скорость прогрева чуть больше с утеплением.

3. От +70 °С до +100 °С скорость прогрева больше с утеплением.

Строго говоря, любая теплоизоляция моторного отсека (в т.ч. теплоодеяло) хорошо работает не в фазе нагрева ДВС, а в фазе остывания, когда она удлиняет остывание МО и двигателя в т.ч. И происходит это благодаря «перекрытию» канала рассеивания тепла конвекцией и излучением.

Физический процесс при гистерезисе

Чтобы подробно понять процесс гистерезиса

, необходимо досконально изучить следующие понятия:

Что касается материалов, в которых лучше всего наблюдается эффект гистерезиса, то таковыми являются именно ферромагнетики. Это смесь химических элементов, которая способна намагничиваться за счет направленности магнитных диполей, поэтому обычно в составе имеются такие металлы, как:

  • железо;
  • кобальт;
  • никель;
  • соединения на их основе.

Чтобы увидеть гистерезис

, на катушку с сердечником из ферромагнетика необходимо подать переменное напряжение. При этом от величины его график намагничивания сильно зависеть не будет, потому как эффект зависит напрямую от свойства самого материала и величины магнитной связи между элементами вещества.

Основополагающим моментом при рассмотрении понятия гистерезиса в электронике является как раз магнитная индукция В, созданная вокруг катушки при подаче напряжения. Она определяется по стандартной формуле, как произведение магнитной диэлектрической проницаемости вещества к сумме напряженности и намагниченности поля.

Чтобы понять общий принцип эффекта гистерезиса, необходимо воспользоваться графиком

. На нем видна петля намагничивания из состояния полной размагниченности. Участок можно обозначить цифрами 0-1. При достаточной величине напряжения и длительности воздействия магнитного поля на материал график доходит до крайней своей точки по указанной траектории. Процесс осуществляется не по прямой, а по кривой с определенным изгибом, который характеризует свойства материала. Чем больше в веществе магнитных связей между молекулами, тем быстрее он выходит в насыщение.

После снятия напряжения с катушки напряженность магнитного поля падает до нуля. Это участок на графике 1-2. При этом материал за счет направленности магнитных моментов остается намагниченным. Но величина намагниченности несколько ниже, чем при насыщении. Если такой эффект наблюдается в веществе, то оно относится к ферромагнетикам, способным накапливать в себе магнитное поле за счет сильных магнитных связей между молекулами вещества.

Со сменой полярности напряжения, подводимого к катушке, процесс размагничивания продолжается по той же кривой до состояния насыщения

. Только в этом случае магнитные моменты диполей будут направлены в обратную сторону. С частотой сети процесс будет периодически повторяться, описывая график, получивший название – петля магнитного гистерезиса.

При многократном намагничивании ферромагнетика меньшей, чем при насыщении напряженностью, то можно получить семейство кривых, из которых можно построить общий график, характеризующий состояние вещества от полного размагниченного до полного намагниченного.

Гистерезис – это комплексное понятие

, характеризующее способность вещества накапливать энергию магнитного поля или другой величины за счет имеющихся магнитных связей между молекулами вещества или особенностей работы системы. Но таким эффектом могут обладать не только сплавы железа, кобальта и никеля. Титанат бария даст несколько иной результат, если его поместить в поле с определенной напряженностью.

Так как он является сегнетоэлектриком, то в нем наблюдается диэлектрический гистерезис. Обратная петля гистерезиса образуется при противоположной полярности подводимого к среде напряжения, а величина противоположного поля, действующего на материал, получило название коэрцитивная сила.

При этом величина поля может предшествовать разным напряженностям, что связано с особенностями фактического состояния диполей – магнитных моментов после прошлого намагничивания. Также на процесс влияют различные примеси

, содержащиеся в составе материала. Чем их больше, тем труднее сдвинуть стенки диполей, поэтому остается так называемая остаточная намагниченность.

Гистерезис в электротехнике

В электротехнике гистерезис — это важная характеристика для материалов, из которых изготавливаются сердечники электрических машин и аппаратов. Прежде чем приступать к объяснениям, давайте рассмотрим кривую намагничивания сердечника.

Изображение на графике подобного вида называют также петлей гистерезиса.

Важно! В данном случае речь идет о гистерезисе феромагнетиков, здесь это нелинейная зависимость внутренней магнитной индукции материала от величины внешней магнитной индукции, которая зависит от предыдущего состояния элемента. При протекании тока через проводник вокруг последнего возникает магнитное и электрическое поле. Если смотать провод в катушку и пропустить через него ток, то получится электромагнит

Если поместить внутрь катушки сердечник, то её индуктивность увеличится, как и силы, возникающие вокруг неё

Если смотать провод в катушку и пропустить через него ток, то получится электромагнит. Если поместить внутрь катушки сердечник, то её индуктивность увеличится, как и силы, возникающие вокруг неё

При протекании тока через проводник вокруг последнего возникает магнитное и электрическое поле. Если смотать провод в катушку и пропустить через него ток, то получится электромагнит. Если поместить внутрь катушки сердечник, то её индуктивность увеличится, как и силы, возникающие вокруг неё.

Отчего зависит гистерезис? Соответственно сердечник изготавливается из металла, от его типа зависят его характеристики и кривая намагничивания.

Если использовать, например, каленную сталь, то гистерезис будет шире. При выборе так называемых магнитомягких материалов — график сузится. Что это значит и для чего это нужно?

Дело в том, что при работе такой катушки в цепи переменного тока ток протекает то в одном, то в другом направлении. В результате и магнитные силы, полюса постоянно переворачивается. В катушке без сердечника это происходит в принципе одновременно, но с сердечником дела обстоят иначе. Он постепенно намагничивается, его магнитная индукция возрастает и постепенно доходит до почти горизонтального участка графика, который называется участком насыщения.

После этого, если вы начнете изменять направление тока и магнитного поля, сердечник должен будет перемагнитится. Но если просто отключить ток и тем самым убрать источник магнитного поля, сердечник все равно останется намагниченным, хоть и не так сильно. На следующем графике это точка «А». Чтобы его размагнитить до исходного состояния нужно создать уже отрицательную напряженность магнитного поля. Это точка «Б». Соответственно ток в катушке должен протекать в обратном направлении.

Значение напряженности магнитного поля для полного размагничивания сердечника называется коэрцитивной силой и чем она меньше, тем лучше в данном случае.

Перемагничивание в обратном направлении будет проходить аналогично, но уже по нижней ветви петли. То есть при работе в цепи переменного тока часть энергии будет затрачиваться на перемагничивание сердечника. Это ведёт к тому что КПД электродвигателя и трансформатора снижается. Соответственно это приводит к его нагреву.

Важно! Чем меньше гистерезис и коэрцитивная сила, тем меньше потери на перемагничивание сердечника. Кроме выше описанного гистерезис характерен и для работы реле и других электромагнитных коммутационных приборов. Например, ток отключения и включения

Когда реле выключено, чтобы оно сработало нужно приложить определённый ток. При этом ток его удержания во включенном состоянии может быть намного ниже тока включения. Оно отключится только тогда, когда ток опустится ниже тока удержания

Например, ток отключения и включения. Когда реле выключено, чтобы оно сработало нужно приложить определённый ток. При этом ток его удержания во включенном состоянии может быть намного ниже тока включения. Оно отключится только тогда, когда ток опустится ниже тока удержания

Кроме выше описанного гистерезис характерен и для работы реле и других электромагнитных коммутационных приборов. Например, ток отключения и включения. Когда реле выключено, чтобы оно сработало нужно приложить определённый ток. При этом ток его удержания во включенном состоянии может быть намного ниже тока включения. Оно отключится только тогда, когда ток опустится ниже тока удержания.

https://youtube.com/watch?v=ydEZ_GeFV6Y

Теория гистерезиса

Стоит учитывать, что гистерезиса происходит также при вращении поля Н, а не только при его изменении по знаку и величине. Называется это гистерезисом магнитного вращения и соответствует изменению направления намагниченности М с изменением направления поля Н. Возникновение гистерезиса магнитного вращения наблюдается также при вращении исследуемого образца относительно фиксированного поля Н.

Кривая намагничивания характеризует также магнитную структуру домена. Структура изменяется при прохождении процессов намагничивания и перемагничивания. Изменения зависят от того, насколько смещаются границы доменов, от воздействий внешнего магнитного поля. Абсолютно все, что способно задержать все процессы, описанные выше, переводит ферромагнетики в нестабильное состояние и является причиной того, что возникает гистерезис магнитный.

Нужно учесть, что гистерезис зависит от множества параметров. Намагниченность меняется под воздействием внешних факторов — температуры, упругого напряжения, следовательно, возникает гистерезис. При этом появляется гистерезис не только намагниченности, но и всех тех свойств, от которых он зависит. Как можно видеть отсюда, явление гистерезиса можно наблюдать не только при намагничивании материала, но и при других физических процессах, связанных прямо или косвенно с ним.

Важное свойство сегнетоэлектриков обнаруживается при изучении зависимости электрического смещения (D) от напряженности поля (E). Смещение является не прямо пропорциональным полю

Диэлектрическая проницаемость вещества () зависит от напряженности поля. Кроме того, величина диэлектрического смещения зависит не только от значения напряженности электрического поля в настоящий момент, но и от предыстории состояний поляризации. Это явление носит название диэлектрического гистерезиса
. Зависимость смещения D от напряженности поля E для сегнетоэлектриков графически изображается петлей гистерезиса
(рис.1).

Между обкладками плоского конденсатора поместим сегнетоэлектрик. Будем изменять напряженность (E) внешнего электрического поля по гармоническому закону. При этом станем проводить измерение диэлектрической проницаемости сегнетоэлектрика (). При этом используется схема, которая состоит из двух конденсаторов, соединенных последовательно. К крайним клеммам конденсаторов присоединен генератор, который создает разность потенциалов, которая изменяется по гармоническому закону. Один из имеющихся конденсаторов заполнен сегнетоэлектриком (его емкость обозначим C), в другом диэлектрик отсутствует (). Считаем, что площади обкладок конденсаторов равны, расстояния между обкладками — d. Тогда напряженности полей конденсаторов:

тогда разности потенциалов между обкладками соответствующих конденсаторов:

где — плотность заряда на пластинах конденсатора. Тогда отношение равно:

Если напряжение U подают на горизонтальную развертку осциллографа, а напряжение на вертикальную развертку, то на экране осциллографа отобразится, при изменении E, кривая, абсцисса точек которой в некотором масштабе равна , а ордината — . Данная кривая будет петлей гистерезиса (рис.1).

Стрелки на представленной кривой указывают направления изменения напряженности поля. Отрезок ОВ — отображает величину остаточной поляризации сегнетоэлектрика. Это поляризация диэлектрика при внешнем поле равном нулю. Чем больше отрезок ОВ, тем больше остаточная поляризация. Отрезок ОС отображает величину напряженности, противоположного направления к вектору поляризации, при которой сегнетоэлектрик полностью деполяризован (остаточная поляризация равна нулю). Чем больше длина отрезка ОС, тем лучше остаточную поляризацию удерживает сегнетоэлектрик.

Петлю гистерезиса можно получить, если производить перемагничивание ферромагнетика в периодическом магнитном поле. Кивая зависимости магнитной индукции магнетика от напряженности внешнего магнитного поля (B(H)) будет иметь вид аналогичный рис.1. Демонстрация петли гистерезиса для ферромагнетиков проводится по выше описанной схеме, но при замене конденсаторов на катушки.

Математические модели гистерезиса[ | ]

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. В 1960-х годах в Воронежском университете начал работать семинар под руководством М. А. Красносельского, на котором создавалась строгая математическая теория гистерезиса.

Позднее, в 1983 году появилась монография М. А. Красносельского и А. В. Покровского, в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве.

Простое и интуитивно-понятное параметрическое описание различных петель гистерезиса предложено в работе Р. В. Лапшина. Помимо гладких петель замена в данной модели гармонических функций на трапецеидальные, треугольные и прямоугольные импульсы позволяет получить кусочно-линейные петли гистерезиса, которые часто встречаются в задачах дискретной автоматики. Имеются реализации модели петли гистерезиса в системе Маткад и на языке программирования R.

Однодоменные ферромагнетики

В том случае, если частицы имеют различный размер, протекает процесс вращения. Происходит это по причине того, что образование новых доменов невыгодно с энергетической точки зрения. Но процессу вращения частиц мешает анизотропия (магнитная). Она может иметь разное происхождение – образовываться в самом кристалле, возникать вследствие упругого напряжения и т. д.). Но именно при помощи этой анизотропии намагниченность удерживается внутренним полем. Его еще называют эффективным полем магнитной анизотропии. И гистерезис магнитный возникает вследствие того, что намагниченность изменяется в двух направлениях – прямом и обратном. Во время перемагничивания однодоменных ферромагнетиков происходит несколько скачков. Вектор намагниченности М разворачивается в сторону поля Н. Причем поворот может быть однородным или неоднородным.

Петля – магнитный гистерезис

Магнитнотвердые материалы, из которых изготовляют постоянные магниты, характеризуются широкой петлей магнитного гистерезиса ( большой коэрцитивной силой Яс) и малой магнитной пр.

Рабочий участок петлн гистерезиса.

Мапштотвердые материалы, из которых изготовляют постоянные магниты, характеризуются широкой петлей магнитного гистерезиса ( большой коэрцитивной силой Нс) и малой магнитной проницаемостью. Для них важнейшей характеристикой является участок нисходящей ветви петли магнитного гистерезиса, заключенный между значениями Вг ( остаточная индукция) и Нс. Этот участок называется кривой размагничивания. Данные по маг-нитотвердым материалам, характеризующие их основные параметры, приведены в специальных справочниках, ГОСТах, технических условиях. Эти величины представляют собой нижнюю границу соответствующего параметра. Разрежем тороид поперек и разведем его половины друг от друга. Магнитный поток должен пройти не только по материалу образца, но и через воздушный промежуток.

Величина этих потерь энергии тем больше, чем больше площадь, ограниченная петлей магнитного гистерезиса.

В уравнении (5.87) и последующих выражениях учтено, что для рассматриваемого участка петли магнитного гистерезиса напряженность поля имеет отрицательный знак. Поэтому значения должны подставляться как положительные величины.

Петля гистерезиса.| Основная кривая намагничивания.| Основная кривая намагничивания, полученная путем соединения верхушек семейства петель гистерезиса.

В ] и до ее значения В2 – Кривая такого типа называется петлей магнитного гистерезиса.

Магнитно-твердые материалы имеют большие значения остаточной магнитной индукции и коэрцитивной силы, широкую петлю магнитного гистерезиса.

Перемагннчивание однодоменных частиц осуществляется за счет вращения векторд намагниченности, В этом случае петля магнитного гистерезиса частицы в координатах М – Н имеет прямоугольный вид и коэрцитивная сила по намагниченности совпадает по величине с полем анизотропии.

В области высокочастотной дисперсии имеют место спад индукции ( рис. 2) и уменьшение площади петли магнитного гистерезиса с увеличением частоты. Наибольший спад составляющих комплексной магнитной проницаемости, индукции и уменьшение площади петли магнитного гистерезиса с увеличением частоты наблюдаются при том же содержании СоО ( 1 мол. Это свидетельствует о том, что изменение указанных параметров вызвано одним и тем же механизмом, видимо магнитным последействием, обусловленным диффузионными процессами.

Кривая размагничивания.

Постоянные магниты, обладающие свойством длительно сохранять остаточную намагниченность, изготовляются из магнитно-твердых материалов, характеризующихся широкой петлей магнитного гистерезиса и обладающих в намагниченном состоянии большим запасом магнитной энергии. Намагниченный до насыщения тороидальный образец при отсутствии тока в намагничивающей катушке имеет остаточную индукцию Вг.

Целью работы являются ознакомление с доменной структурой и процессами технического намагничивания ферромагнетиков, а также измерение основных характеристик петли магнитного гистерезиса в помощью магнитооптического эффекта Фарадея.

На рис. 1.24 показана последовательность изменения поля ролика подшипника, соответствующего его различным магнитным состояниям, определяемым по петле магнитного гистерезиса ролика. Однако при изучении картины поля следует учитывать, что распределение магнитных силовых линий вокруг ролика зависит от его намагниченности, предыдущего магнитного состояния, значения поля электромагнита и размагничивающего поля ролика.

К вопросу об определении потерь энергии в ферромагнитном сердечнике.

Виды гистерезиса в физике

Для решения практических электротехнических задач следует изучить подробно магнитный гистерезис. Полное представление об аналогичных явлениях на основе физических принципов можно получить после рассмотрения сегнетоэлектрических и упругих процессов.

Магнитный гистерезис

В соответствии с базовым определением, это явление обозначает отставание намагниченности (М) материала от изменяющегося воздействия внешнего поля. Для эксперимента можно собрать схему, в которой ток пропускают через соленоид. Регулируют уровень напряженности (Н) с помощью параллельного переменного резистора. Сердечник – из ферромагнетика.

Схема экспериментальной установки

Важно! Представленные зависимости следует рассматривать в комплексе с графиком на первом рисунке. До начала эксперимента образец обладает нейтральными характеристиками. Намагниченность и напряженность равны нулю, магнитные моменты доменов расположены хаотически

После замыкания цепи и увеличения силы тока увеличивается напряженность. На рисунке показано, как одновременно с этим изменяется направленность моментов. Индукция в образце (B) равна сумме напряженности и намагниченности с корректирующим множителем (μ0):

Намагниченность и напряженность равны нулю, магнитные моменты доменов расположены хаотически. После замыкания цепи и увеличения силы тока увеличивается напряженность. На рисунке показано, как одновременно с этим изменяется направленность моментов. Индукция в образце (B) равна сумме напряженности и намагниченности с корректирующим множителем (μ0):

До начала эксперимента образец обладает нейтральными характеристиками. Намагниченность и напряженность равны нулю, магнитные моменты доменов расположены хаотически. После замыкания цепи и увеличения силы тока увеличивается напряженность. На рисунке показано, как одновременно с этим изменяется направленность моментов. Индукция в образце (B) равна сумме напряженности и намагниченности с корректирующим множителем (μ0):

B = μ0*H + μ0*M.

На определенном уровне показатель μ0*M увеличивается до предельного значения. Последующее изменение напряженности внешнего поля не оказывает на него никакого влияния.

Сегнетоэлектрический гистерезис

Причина особой формы графика в этом примере – образование поляризации без приложения сил внешнего поля. Такой эффект наблюдается в определенном температурном диапазоне. Соответствующие материалы называют сегнетоэлектриками.

Сегнетоэлектрики

На первом рисунке показана петля гистерезиса, где отмечены места:

  • точкой «а» – состояние насыщения;
  • Pc – остаточная поляризованность;
  • -Ec– коэрцитивная сила.

На второй части (2) изображено хаотичное (а) и направленное (б) расположение доменов. Ориентацию вдоль линий электростатического поля применяют для создания конденсаторов с изменяемой емкостью.

К сведению. Как и в других веществах, при повышении температуры до уровня точки Кюри намагниченность пропадает.

Упругий гистерезис

Это явление объясняется особыми механическими свойствами отдельных материалов. Они сохраняют созданную достаточно сильным ударным воздействием форму. Типичный пример – изготовление изделий из металла с применением ковки.

Хитрый алгоритм с опережением

Рассмотренный далее алгоритм позволяет выключать и включать реле заранее, анализируя скорость изменения температуры. Если система чувствует, что температура растёт и может подняться выше установки – она выключает реле, и наоборот. Такой способ называется управлением с обратной связью по скорости изменения величины. Сама скорость изменения вводится в алгоритм как производная – изменение величины, делённое на время, за которое произошло изменение. Далее это изменение умножается на некий коэффициент, который играет роль коэффициента усиления и уникален для каждой системы, подбирается вручную в диапазоне от 0.001 до 1000, зависит от инертности системы и выбранного периода работы регулятора. Сам алгоритм можно представить в виде функции:

boolean relayGet() { float signal; if (k > 0) { float rate = (input — prevInput) / _dt_s; // производная от величины (величина/секунду) prevInput = input; signal = input + rate * k; } else { signal = input; } int8_t F = (sign(signal — setpoint — hysteresis / 2) + sign(signal — setpoint + hysteresis / 2)) / 2; if (F == 1) output = _direction; else if (F == -1) output = !_direction; return output; }

Данный алгоритм реализован у меня в библиотеке GyverRelay, вот тут на неё есть вся документация, примеры и прочее. Рассмотрим простой пример:

#define THERM_PIN 0 #define RELAY_PIN 2 #define SETPOINT 50.0 #define HYSTER 2 #include «thermistorMinim.h» // GND — термистор — A0 — 10к — 5V thermistor therm(THERM_PIN, 10000, 3950); // пин, сопротивление, бета-коэффициент #include «GyverRelay.h» // установка, гистерезис, направление регулирования GyverRelay regulator; // либо GyverRelay regulator(); без указания направления (будет REVERSE) void setup() { Serial.begin(9600); pinMode(RELAY_PIN, OUTPUT); // пин реле regulator.k = 8.5; // коэффициент обратной связи (подбирается по факту) regulator.setpoint = SETPOINT; // установка (ставим на SETPOINT градусов) regulator.hysteresis = HYSTER; // ширина гистерезиса } void loop() { regul(); debug(); } void regul() { static uint32_t tmr; if (millis() — tmr > 500) { tmr = millis(); regulator.input = therm.getTempAverage(); // сообщаем регулятору текущую температуру digitalWrite(RELAY_PIN, regulator.getResult()); // отправляем на реле (ОС работает по своему таймеру) } } void debug() { static uint32_t tmr; if (millis() — tmr > 50) { tmr = millis(); Serial.print(regulator.input); // фактическая Serial.print(‘,’); Serial.print(SETPOINT); // гистерезис Serial.print(‘,’); Serial.print(SETPOINT + HYSTER); // гистерезис Serial.print(‘,’); Serial.print(SETPOINT — HYSTER); // гистерезис Serial.print(‘,’); Serial.println(regulator.output * 2 + 30); // сост. реле } }

Как можно видеть, библиотека очень простая: настраиваем установку и гистерезис – система будет стараться удержать установку внутри него, то есть он играет больше роль окна точности. Далее передаём в регулятор значение с датчика, а он нам выдаёт 1 или 0 – включать или выключать реле. И всё! График на той же системе выглядит вот так, регулятор работает просто потрясающе! Такая точность даже и не снилась классическим схемам с гистерезисом.


Как настроить: для быстрой системы, как у меня (обмотанный нихромом термистор), нужно выбирать время опроса датчика поменьше, то есть опрашивать датчик почаще. У меня хороший результат получился на 2 опросах в секунду. Для больших инерционных систем можно брать период в несколько секунд или даже минут. Алгоритм измеряет скорость изменения температуры за это время и умножает его на коэффициент. Если во время работы система перелетает через гистерезис, нужно увеличить коэффициент, чтобы реле выключалось и включалось раньше.

https://youtube.com/watch?v=k2kRkYB9n2c

Магнитный гистерезис

Магнитный гистерезис — явление зависимости вектора намагничивания и вектора магнитной индукции в веществе не только от приложенного внешнего поля, но и от истории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. При полной ориентации всех доменов в направлении внешнего поля (ферромагнетик становится «однодоменным») достигается состояние насыщения. При выключении внешнего поля происходит некоторое уменьшение намагниченности вследствие теплового движения в кристалле, однако ферромагнетик остается намагниченным, так как при невысоких температурах энергия теплового движения сравнительно невелика и ее недостаточно для полной разориентации доменов.

Эти процессы требуют больших энергетических затрат и являются нелинейными. Кривая размагничивания ферромагнетика не совпадает с кривой намагничивания. Изменение намагниченности ферромагнетика (и индукции поля в нем) запаздывает по отношению к изменению напряженности внешнего поля. Это явление называется гистерезисом. При уменьшении напряженности внешнего поля до нуля, индукция поля в магнетике не равна нулю, ее величина называется остаточной индукцией Во. Чтобы полностью размагнитить магнетик, надо изменить направление внешнего поля на противоположное, и увеличивать его. При некотором значении напряженности «обратного» поля Нс, называемом коэрцитивной силой, магнетик полностью размагничивается. Замкнутая кривая, отражающая процесс перемагничивания ферромагнетиков, называется петлей гистерезиса (рис.1).

Рис.1. Петля гистерезиса

На данном графике точки В и С характеризуют состояние насыщения. Величина остаточной индукции характеризуется отрезком B0.

Коэрцитивная сила определяется точкой пересечения петли гистерезиса с осью напряженности магнитного поля. По величине коэрцитивной силы ферромагнетики разделяются на мягкие и жесткие магнитные материалы.

Жесткие ферромагнетики используются для постоянных магнитов, они имеют большую остаточную намагниченность и широкую петлю гистерезиса.

Мягкие ферромагнетики применяются в приборах и установках, работающих с переменными электромагнитными полями, где требуется частое перемагничивание при минимальных энергетических потерях (например, в сердечниках трансформаторов). Для них характерна небольшая остаточная намагниченность и узкая петля гистерезиса.

Датчики уровня

Для того, чтобы зарегистрировать критические уровни — нам понадобятся датчики. Нам не нужно знать числовое значение уровня воды в баке в каждый момент времени, а только нужно регистрировать достижение критических значений – поэтому подойдут поплавковые датчики.

Они работают по принципу обыкновенного рыболовного поплавка – отсюда и название. Как только уровень воды достигает поплавковой части датчика – он всплывает и замыкает контактную площадку на своей стационарной части, выполняя при этом роль обычного размыкателя цепи.

Такие датчики называют датчиками с выходом типа «сухой контакт». Слово «сухой» означает, что сам по себе датчик никакого напряжения не выдаёт.

Подробнее о поплавковых датчика уровня можно прочитать в нашей статье.