Осциллограф своими руками

Содержание

Применение в быту

В процессе эксплуатации следует использовать перечисленные ниже рекомендации:

  • компьютер вместе с приставкой заземляют перед выполнением измерительных операций;
  • используют диапазон, подходящий для определенной амплитуды сигнала;
  • прекращают работу при повреждении электрической изоляции, выявлении других опасных неисправностей.

Представленные осциллографы для ПК при правильной сборке и настройке обеспечивают достаточно высокую точность. Впрочем, надо не забывать, что даже специализированные приборы этой категории предназначены скорее для изучения формы сигналов. Такие задачи вполне можно решать с применением рассмотренного в публикации оборудования.

Источники

  • https://chebo.pro/tehnologii/ostsillograf-iz-monitora-kompyutera-v-domashnih-usloviyah.html
  • https://www.syl.ru/article/204424/new_usb-ostsillograf-svoimi-rukami-shema
  • https://tytmaster.ru/oscillograf-svoimi-rukami/
  • https://SdelaySam-SvoimiRukami.ru/3923-prosteyshiy-oscillograf-iz-kompyutera.html
  • https://mirrukodelija.ru/oscillograf-svoimi-rukami/
  • https://el-shema.ru/publ/izmerenija/prostoj_samodelnyj_usb_oscillograf/8-1-0-390
  • http://www.joyta.ru/6482-cifrovoj-usb-oscillograf-k-kompyuteru/
  • https://amperof.ru/teoriya/programma-oscillograf-dlya-pk.html

Схема и сборка устройства

Существует много схем для изготовления цифрового USB-осциллографа своими руками. Не все доступны для неопытного радиолюбителя. Наиболее легким является сборка устройств на основе звуковой карты, так как здесь нужно собрать только делитель для увеличения порога входящего напряжения.

Подключение через USB

USB-осциллограф сложный в изготовлении своими руками, но высокоточный прибор с большим диапазоном по частоте. Детали для него можно приобрести в магазине или заказать через интернет. Список запчастей следующий:

  • двусторонняя плата с готовыми дорожками;
  • АЦП AD9288−40BRSZ;
  • система собирается на процессоре марки CY7C68013A;
  • резисторы, трансформаторы, конденсаторы, дроссели — номиналы указаны на схеме;
  • паяльник и монтажный фен, паяльная паста, флюс и припой;
  • провод с площадью сечения 0,1 мм 2 и лаковым покрытием;
  • тороидальный сердечник для изготовления трансформатора;
  • чип памяти EEPROM flash 24LC64;
  • реле с управляющим напряжением не более 3,3 В;
  • операционные усилители AD8065;
  • преобразователь постоянного тока DC-DC;
  • USB коннектор;
  • стеклотекстолит;
  • разъемы для щупов, корпус для платы.

Схема устройства приведена ниже.

Так как используется двусторонний монтаж, то самостоятельно плату с дорожками изготовить не получится. Надо обратиться к производственному объединению, выпускающему подобные изделия, и сделать заказ со следующими условиями:

  • стеклотекстолит, на котором будет размечена схема, должен иметь толщину не менее 1,5 мм;
  • толщина медных дорожек не менее 1 унции (OZ) или 35 мкм;
  • сквозная металлизация отверстий;
  • лужение контактных площадок для лучшего припаивания элементов.

Получив заказ, можно приступать к сборке. Вначале собирается конвертер DC-DC, для получения двух постоянных напряжений: +5 В и -5 В. Изготавливается он отдельно от основного устройства, а затем подсоединяется экранированным кабелем.

Далее аккуратно припаять элементы схемы. Особенно быть осторожным при пайке микросхем, не допускать увеличения температуры паяльника выше 300°С.

Разместив изготовленное устройство в корпусе, подключить его к компьютеру через USB разъем. После этого перемкнуть перемычку JP1.

Использование аудиокарты

Осциллограф из внешней звуковой карты — малобюджетный и простой в изготовлении осциллоскоп к компьютеру или ноутбуку. Более всего подойдет начинающим радиолюбителям. Можно использовать как внешнее, так и внутреннее звуковое устройство.

Входное напряжение для внутренней звуковой карты компьютера не должно превышать 0,5-2 В. Чтобы измерить сигнал с амплитудой более 2 В, необходимо подать его на компьютер через делитель напряжения. Собирается аттенюатор по следующей схеме.

Подаваемое напряжение уменьшается в 100, 10 или 1 раз, в зависимости от величины. Для этого щупы вставляются в соответствующие разъемы. Точная настройка происходит через подстроечный резистор. Диоды предохраняют от случайной подачи напряжения более 2 В.

Конструкцию разместить в металлической коробке для устранения возможных наводок. Провод, подключаемый к звуковой карте, должен быть коротким с медной оплеткой. Для создания второго канала необходимо продублировать устройство. Если на карте есть несколько входов, то выбрать с наименьшим внутренним сопротивлением.

Ниже рассматривается схема с использованием внешней USB звуковой карты стоимостью около 2 долларов.

Кроме адаптера понадобятся:

  • сопротивление на 120 кОм:
  • коннектор mini Jake;
  • щупы для измерений.

После приобретения всех запчастей проделать следующие шаги:

  1. Вскрыть аккуратно адаптер, так, чтобы не сломать защелки. Внутри будет небольшая плата.
  2. Снять конденсатор C6 и поставить на его место сопротивление на 120 кОм.
  3. Припаять к щупам коннекторы mini Jack вместо оригинальных и вставить их в адаптер.
  4. Скачатьархив с драйверами устройства и распаковать его в папку. Вставить гаджет в компьютер.
  5. Компьютер запросит драйвера на новое устройство.
  6. Установить их, указав путь к папке.
  7. Нажать на кнопку «Далее» для установки драйверов.

Перед использованием осциллограф необходимо настроить.

Конструкция и применение

Осциллограф — сложный электрический прибор. Понять принцип его работы поможет блок-схема.

Имеются два луча развертки: по вертикали — Y и по горизонтали — X. По оси X откладывается значения времени, по Y отображается амплитуда сигнала.

На Y подается сигнал с устройства. Далее он проходит через аттенюатор, который изменяет чувствительность контура. Потом, пройдя предварительный усилитель, попадает в линию задержки, которая «придерживает» сигнал пока не сработает генератор развертки. Оконечный усилитель выводит сигнал на экран осциллоскопа. Чем больше входное напряжение, тем больше амплитуда сигнала.

На X подается пилообразное напряжение с генератора развертки, благодаря чему сигнал на осциллографе получается «растянутым» по времени. Меняя размерность генератора, можно получить изображение с разверткой до тысячных долей секунды.

Чтобы развертка запустилась одновременно с поступлением сигнала, в устройстве предусмотрена система синхронизации. Есть 3 возможных источника синхроимпульсов:

  1. Измеряемый сигнал. Наиболее часто используемый вариант, особенно при постоянной частоте входящего источника.
  2. Электрическая сеть. Частота сети поддерживается с высокой точностью, поэтому через нее возможна синхронизация.
  3. Внешний источник. Используется, как лабораторный генератор сигналов, так и смартфон с приложением, генерирующим синхроимпульсы определенной частоты.

Советуем изучить Мощные магниты

Осциллограф визуализирует форму сигнала, что помогает понять причину неисправности. С помощью устройства снимается АЧХ прибора, есть возможность узнать скорость нарастания импульса в цифровых устройствах.

Используются осциллографы при настройке, ремонте электронных девайсов, будь то бытовая техника, ремонт автотранспорта или орбитальная станция.

Как работать с осциллографом

Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения.
Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.

Подключение осциллографа

В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.

Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.

Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.

Измерительные шнуры для осциллографа

Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).

После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.

Проверка осциллографа перед работой

Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.

Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен

Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.

https://youtube.com/watch?v=hwiPbbfpUZA

Как измерить осциллографом напряжение: переменное, меандра, постоянное

Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление

Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно

Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.

Измерение напряжения осциллографом

Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел  = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.

Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.

Как осциллографом определить частоту

Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.

Как определить частоту сигнала по осциллографу

Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц

Подгонка резисторов

Стоит отметить, что подгонка резисторов посредством удаления части пленки на сегодняшний день иногда используется даже в современной промышленности, то есть таким способом часто делается осциллограф из компьютера (USB или какой-нибудь другой).

Однако при этом сразу стоит отметить, что если вы собираетесь подгонять высокоомные резисторы, то в таком случае резистивная пленка ни в коем случае не должна быть прорезана насквозь

Все дело в том, что в таких устройствах она наносится на цилиндрическую поверхность в форме спирали, поэтому производить подпил нужно предельно осторожно, чтобы исключить возможность разрыва цепи

Если вы делаете осциллограф из компьютера своими руками, то для того, чтобы провести подгонку резисторов в домашних условиях, нужно просто использовать самую простую наждачную бумагу «нулевку».

  1. Первоначально у того резистора, у которого присутствует заведомо меньшее сопротивление, нужно удалить аккуратно защитный слой краски.
  2. После этого следует подпаять резистор к концам, которые и будут подклеиваться к мультиметру. Путем выполнения осторожных движений наждачной бумагой показатели сопротивления резистора доводятся до нормального значения.
  3. Теперь, когда резистор окончательно подогнан, место пропила нужно покрыть дополнительным слоем специализированного защитного лака или же клея.

На данный момент такой способ можно назвать наиболее простым и быстрым, но при этом он позволяет получить неплохие результаты, что и делает его оптимальным для проведения работ в домашних условиях.

Электрическая схема

Если вам нужна приставка к компьютеру (осциллограф), то сделать его будет уже несколько сложнее. На данный момент в интернете можно найти достаточно большое количество различных схем таких устройств, и для постройки, к примеру, двухканального осциллографа вам нужно будет их продублировать. Использование второго канала часто является актуальным в том случае, если нужно сравнивать два сигнала или же приставка к компьютеру (осциллограф) будет использоваться также с подключением внешней синхронизации.

В преимущественном большинстве случаев схемы являются предельно простыми, однако таким образом вы сможете обеспечить самостоятельно довольно широкий диапазон доступных для измерения напряжений, используя при этом минимальное количество радиодеталей. При этом аттенюатор, который строится по классической схеме, потребовал бы от вас использования специализированных высокомегаомных резисторов, а его входное сопротивление постоянно изменялось бы в случае переключения диапазона. По этой причине вы бы испытывали определенные ограничения в использовании стандартных осциллографических кабелей, которые рассчитываются на входной импеданс не более 1 мОм.

Подбор провода

Отдельного упоминания заслуживает подбор провода. Правильный провод выглядит так:

Миниджек 3,5 мм расположен рядом для масштаба

Правильный провод представляет из себя более-менее обычный экранированный провод, с одним существенным отличием – центральная жила у него одна. Очень тонкая и выполнена из стальной проволоки, а то и проволоки с высоким удельным сопротивлением. Почему именно так поясню немного позже.

Такой провод не сильно распространен и найти его достаточно непросто. В принципе, если вы не работаете с высокими частотами порядка десятка мегагерц, особой разницы, использовав обычный экранированный провод, вы можете и не ощутить. Встречал мнение, что на частотах ниже 3-5 МГц выбор провода не критичен. Ни подтвердить, ни опровергнуть не могу – нет практики на частотах выше 1 МГц. В каких случаях это может сказываться тоже скажу позже.

Самодельные осциллографы нечасто имеют полосу пропускания в несколько мегагерц, поэтому используйте тот провод, который найдете. Просто стремитесь подобрать такой, у которого центральные жилы потоньше и их поменьше. Встречал мнение, что центральная жила должна быть потолще, но это явно из серии «вредных советов». Малое сопротивление проводу осциллографа без надобности. Там токи в наноамперах.

Если подключаете напрямую на выход логического элемента либо в ИБП, т.е. к достаточно мощному источнику сигнала, имеющему достаточно малое собственное сопротивление, то все будет отображаться нормально. Но если в цепи есть значительные сопротивления, то емкость щупа будет сильно искажать форму сигнала, т.к. будет заряжаться через это сопротивление. А это означает, что вы уже не будете уверены в достоверности осциллограммы. Т.е. чем ниже собственная емкость щупа, тем шире диапазон возможных применений вашего осциллографа.

Что нужно использовать?

Одним из наиболее оптимальных вариантов является программа Osci, которая имеет интерфейс, схожий со стандартным осциллографом: на экране есть стандартная сетка, при помощи которой вы можете самостоятельно измерить длительность, или же амплитуду.

Из недостатков данной утилиты можно отметить то, что она работает несколько нестабильно. В процессе своей работы программа может иногда зависать, а для того, чтобы потом ее сбросить, нужно будет использовать специализированный Task Manager. Однако все это компенсируется тем, что утилита имеет привычный интерфейс, является достаточно удобной в использовании, а также отличается достаточно большим количеством функций, которые позволяют сделать полноценный осциллограф из компьютера.

Плюсы и минусы вышеприведенной схемы

К плюсам такого решения однозначно можно отнести простоту и дешевизну сборки. Старая гарнитура или один новый разъем практически ничего не стоят, а времени потребуется всего несколько минут.

Но у этой схемы есть ряд существенных недостатков, а именно:

  • Малый диапазон измеряемых частот (в зависимости от качества звукового тракта гаджета колеблется в пределах от 30 Гц до 15 кГц).
  • Отсутствие защиты планшета или смартфона (при случайном подключении щупов к участкам схемы с повышенным напряжением можно в лучшем случае сжечь микросхему, отвечающую за обработку аудиосигнала на вашем гаджете, а в худшем – полностью вывести из строя ваш смартфон или планшет).
  • На очень дешевых устройствах присутствует значительная погрешность в измерении сигнала, достигающая 10-15 процентов. Для точной настройки оборудования такая цифра недопустима.

Конструктор осциллографа: модель DSO138

Китайские производители всегда славились умением создавать электронику для профессиональных потребностей с очень ограниченным функционалом и за довольно небольшие деньги.

С одной стороны такие приборы не способны полностью удовлетворить ряд потребностей человека, занимающегося радиоэлектроникой в профессиональном русле, однако начинающим и любителям таких «игрушек» будет более, чем достаточно.

Одной из популярных моделей китайского производства типа конструктор осциллографа считается DSO138. Прежде всего, у этого прибора невысокая стоимость, а поставляется он со всем комплектом необходимых деталей и инструкций, поэтому как правильно сделать осциллограф своими руками, используя имеющуюся в комплекте документацию вопросов возникать не должно.

Перед монтажом нужно ознакомиться с содержимым упаковки: плата, экран, щуп, все нужные радиодетали, инструкция для сборки и принципиальная схема.

На выходе должен получиться прибор с такими характеристиками:

  • Напряжение на входе: DC 9V;
  • Максимальное напряжение на входе: 50 Vpp (1:1 щуп)
  • Потребляемый ток 120 мА;
  • Полоса сигнала: 0-200KHz;
  • Чувствительность: электронное смещение с опцией вертикальной регулировки 10 мВ / дел — 5В / Div (1 — 2 — 5);
  • Дискретная частота: 1 Msps;
  • Сопротивление на входе: 1 MОм;
  • Временной интервал: 10 мкс / Div — 50s / Div (1 — 2 — 5);
  • Точность замеров: 12 бит.

Устройства с подавлением колебаний

Осциллографы с блоком подавления колебаний используются в наше время довольно редко. Подходят они больше всего именно для тестирования электроприборов. Дополнительно следует отметить их высокую вертикальную чувствительность. В данном случае параметр предельной частоты в цепи не должен превышать 4 Гц. За счет этого стабилитрон во время работы сильно не перегревается.

Делается осциллограф своими руками с применением микросхемы сеточного типа. При этом необходимо в самом начале определиться с типами диодов. Многие в данной ситуации советуют применять только аналоговые типы. Однако в этом случае скорость передачи сигнала может значительно снизиться.

Не секрет, что у начинающих радиолюбителей не всегда есть под рукой дорогое измерительное оборудование. К примеру осциллограф, который даже на китайском рынке, самая дешевая модель стоит порядка нескольких тысяч. Бывает осциллограф нужен для ремонта различных схем, проверка искажений усилителя, настройки звуковой техники и т.п. Очень часто низкочастотный осциллограф используется при диагностике работы датчиков в автомобиле. В этом ряде случаем вам поможет наипростейший осциллограф, сделанный из вашего персонального компьютера. Нет, ваш компьютер никак не придется разбирать и дорабатывать. Вам понадобится всего на всего спаять приставку – делитель, и подключить её к ПК через звуковой вход. А для отображения сигнала установить специальный софт. Вот за пару десятков минут у вас появится собственный осциллограф, который вполне может сгодится для анализа сигналов. Кстати можно использовать не только стационарный ПК, но и ноутбук или нетбук. Конечно, такой осциллограф с большой натяжкой сравним с настоящим прибором, так как имеет маленький диапазон частот, но вещь в хозяйстве очень полезная, чтобы посмотреть выхода усилителя, различные пульсации источников питания и тп.

Как сделать своими руками осциллограф из ноутбука. Двухканальный осцилограф из компьютера

Технологии не стоят на месте, и угнаться за ними не всегда просто. Появляются новинки, в которых хотелось бы разобраться более детально. Особенно это касается разнообразных позволяющих собирать практически любое простое устройство пошагово. Сейчас в их числе и платы Ардуино со своими клонами, и китайские микропроцессорные компьютеры, и готовые решения, идущие уже с программным обеспечением на борту.

Однако для работы со всем вышеперечисленным спектром интересных новинок, равно как и для ремонта цифровой техники, требуется дорогостоящий высокоточный инструмент. Среди такого оборудования — и осциллограф, позволяющий считывать частотные показания и проводить диагностику. Зачастую его стоимость довольно высока, и начинающие экспериментаторы не могут позволить себе такую дорогостоящую покупку. Тут на помощь приходит решение, которое появилось на многих радиолюбительских форумах почти сразу после появления планшетов на системе Андроид. Его суть заключается в том, чтобы с минимальными затратами изготовить осциллограф из планшета, не внося при этом в свой гаджет никаких доработок либо модификаций, а также исключая риски его повреждения.

Что такое осциллограф

Осциллограф — как прибор для измерения и отслеживания частотных колебаний в электрической сети — известен с середины прошлого века. Данными приборами комплектуются все учебные и профессиональные лаборатории, поскольку обнаружить некоторые неисправности или произвести точную настройку оборудования можно только лишь с его помощью. Он может выводить информацию как на экран, так и на бумажную ленту. Показания позволяют увидеть форму сигнала, рассчитать его частоту и интенсивность, а в результате определить источник его появления. Современные осциллографы позволяют рисовать трехмерные цветные частотные графики. Мы же сегодня остановимся на простом варианте стандартного двухканального осциллографа и реализуем его с помощью приставки к смартфону или планшету и соответствующего программного обеспечения.

Самый простой вариант создания карманного осциллографа

Если замеряемая частота находится в диапазоне слышимых человеческим ухом частот, а уровень сигнала не превышает стандартный микрофонный, то собрать осциллограф из планшета на «Андроид» своими руками можно без каких бы то ни было дополнительных модулей. Для этого достаточно разобрать любую гарнитуру, на которой должен обязательно присутствовать микрофон. Если подходящей гарнитуры нет, то потребуется купить звуковой штекер 3,5 мм обязательно с четырьмя контактами. Перед припаиванием щупов уточните распиновку разъема вашего гаджета, ведь их бывает два вида. Щупы необходимо подключить к пинам, соответствующим подключению микрофона на вашем устройстве.

Далее следует загрузить из «Маркета» программное обеспечение, способное замерять частоту на микрофонном входе и рисовать график на основе полученного сигнала. Таких вариантов довольно много. Поэтому при желании будет из чего выбрать. Как и говорилось ранее, не потребовалась переделка планшета. Осциллограф будет готов сразу же после калибровки приложения.

Плюсы и минусы вышеприведенной схемы

К плюсам такого решения однозначно можно отнести простоту и дешевизну сборки. Старая гарнитура или один новый разъем практически ничего не стоят, а времени потребуется всего несколько минут.

Но у этой схемы есть ряд существенных недостатков, а именно:

  • Малый диапазон измеряемых частот (в зависимости от качества звукового тракта гаджета колеблется в пределах от 30 Гц до 15 кГц).
  • Отсутствие защиты планшета или смартфона (при случайном подключении щупов к участкам схемы с повышенным напряжением можно в лучшем случае сжечь микросхему, отвечающую за обработку аудиосигнала на вашем гаджете, а в худшем — полностью вывести из строя ваш смартфон или планшет).
  • На очень дешевых устройствах присутствует значительная погрешность в измерении сигнала, достигающая 10-15 процентов. Для точной настройки оборудования такая цифра недопустима.