Значения других единиц, равные введённым выше
открыть
свернуть
Международная система (СИ)
джоуль в секунду → мегаватт (МВт) |
|
джоуль в секунду → киловатт (кВт) |
джоуль в секунду → ватт (Вт) |
|
джоуль в секунду → вольт-ампер (В-А) |
Единицы:
мегаватт
(МВт)
/
киловатт
(кВт)
/
ватт
(Вт)
/
вольт-ампер
(В-А)
открыть
свернуть
СГС и внесистемные единицы
джоуль в секунду → гигакалорий в секунду | |
джоуль в секунду → килокалорий в секунду | |
джоуль в секунду → калорий в секунду | |
джоуль в секунду → гигакалорий в минуту | |
джоуль в секунду → килокалорий в минуту | |
джоуль в секунду → калорий в минуту | |
джоуль в секунду → гигакалорий в час | |
джоуль в секунду → килокалорий в час | |
джоуль в секунду → калорий в час | |
джоуль в секунду → котловая лошадиная сила (hp(S)) |
джоуль в секунду → электрическая лошадиная сила (hp(E)) |
|
джоуль в секунду → гидравлическая лошадиная сила | |
джоуль в секунду → механическая лошадиная сила (hp(I)) |
|
джоуль в секунду → метрическая лошадиная сила (hp(M)) |
|
джоуль в секунду → килограмм-сила метр в секунду (кгс*м/с) |
|
джоуль в секунду → джоуль в секунду | |
джоуль в секунду → джоуль в минуту | |
джоуль в секунду → джоуль в час | |
джоуль в секунду → эрг в секунду | |
джоуль в секунду → метрическая тонна охлаждения (RT) |
|
джоуль в секунду → фригория в час (fg/h) |
Единицы:
гигакалорий в секунду
/
килокалорий в секунду
/
калорий в секунду
/
гигакалорий в минуту
/
килокалорий в минуту
/
калорий в минуту
/
гигакалорий в час
/
килокалорий в час
/
калорий в час
/
котловая лошадиная сила
(hp(S))
/
электрическая лошадиная сила
(hp(E))
/
гидравлическая лошадиная сила
/
механическая лошадиная сила
(hp(I))
/
метрическая лошадиная сила
(hp(M))
/
килограмм-сила метр в секунду
(кгс*м/с)
/
джоуль в секунду
/
джоуль в минуту
/
джоуль в час
/
эрг в секунду
/
метрическая тонна охлаждения
(RT)
/
фригория в час
(fg/h)
открыть
свернуть
Британские и американские единицы
джоуль в секунду → американская тонна охлаждения (USRT) |
|
джоуль в секунду → британская термальная единица в секунду (BTU/s) |
джоуль в секунду → британская термальная единица в минуту (BTU/min) |
|
джоуль в секунду → британская термальная единица в час (BTU/hr) |
|
джоуль в секунду → фут фунт-сила в секунду (ft*lbf/s) |
Единицы:
американская тонна охлаждения
(USRT)
/
британская термальная единица в секунду
(BTU/s)
/
британская термальная единица в минуту
(BTU/min)
/
британская термальная единица в час
(BTU/hr)
/
фут фунт-сила в секунду
(ft*lbf/s)
открыть
свернуть
Естественнные единицы
В физике естественные единицы измерения базируются только на фундаментальных физических константах. Определение этих единиц никак не связано ни с какими историческими человеческими построениями, только с фундаментальными законами природы.
джоуль в секунду → планковская мощность (L²MT⁻³) |
Единицы:
планковская мощность
(L²MT⁻³)
Нестандартные цветовые маркировки
Помимо типовой цветовой кодировки обозначений сопротивлений, есть и нестандартные разновидности маркировки. В основном, нестандартные варианты встречаются у некоторых известных изготовителей электроники, имеющих свои подразделения по созданию и выпуску электронных элементов.
Необычные цветовые обозначения, чаще всего встречаются у Филипс и Панасоник, они кодируют элементы, произведенные на внутренних предприятиях отличной от классической, маркировкой, для которой используются специальные справочники и компьютерного типа программы.
Необычная маркировка используется для отличия, к примеру, резисторов, созданных по стандартам MIL определенной марки, от стандартов промышленного и бытового типа, указывает на огневую стойкость и многое другое.
Источники
- https://www.RadioElementy.ru/articles/tsvetovaya-markirovka-rezistorov-kak-chitat/
- http://www.radiodetector.ru/kak-markirujutsya-rezistory/
- https://poweredhouse.ru/kalkulyator-cvetovoj-markirovki-rezistorov-onlajn/
- https://www.RusElectronic.com/markirovka-rjezistorov/
- http://www.joyta.ru/7951-smd-rezistory-markirovka-smd-rezistorov-kalkulyator/
- https://onlineelektrik.ru/eoborudovanie/kondensatori/markirovka-smd-rezistorov-tablitsa-oboznachenij.html
- https://slarkenergy.ru/oborudovanie/datchiki/cvetnaya-markirovka-rezistorov.html
- http://arduino.on.kg/kalkulyator-cvetovoy-markirovki-rezistorov
- https://onlineelektrik.ru/eoborudovanie/kondensatori/tsvetovaya-markirovka-rezistorov-kak-opredelit-po-poloskam.html
Янв 25, 2021
Как себя проверить
Если в навыке расшифровки кодов вы пока неуверены, есть два способа проверить сопротивление резистора. Первый — программный, второй — при помощи мультиметра. Второй — более надежный, так как вы видите реальное положение вещей, а заодно и проверяете сопротивление элемента.
Одна из программ по расшифровке кодов резисторов «Резистор 2.2»: цветовая маркировка
Найти программу расшифровки кодов резисторов просто — по запросу выскакивает не один десяток. Они несложные, отличаются только масштабами баз данных. Не в каждой можно найти все варианты кодов, но популярные есть везде. В этих программах сначала выбирается тип кодировки (буквы или полоски), а затем вносятся все данные. То, что вы вводите отображается в специальном окошке — чтобы можно было визуально проверить правильность введенной информации. После ввода данных нажимаете кнопку, программа выдает вам номинал и допуск. Сравниваете с тем, что получилось у вас.
Проверяем сопротивление при помощи мультиметра
Проверить насколько правильно вы по кодировке определили сопротивление резистора можно и при помощи мультиметра. Для этого его выставляем в режим «изменение сопротивлений». Диапазон подбираем в зависимости от того, что насчитали. Один щуп прикладываем к одному выводу, второй — к другому. На экране высвечивается сопротивление. Оно может отличаться от высчитанного. Разница зависит от допуска. Чем больше допуск, тем больше может быть разница. Но в любом случае показания должны быть сравнимы с найденным номиналом. Подробности смотрите в видео.
Калькулятор цветовой маркировки резисторов поможет расшифровать по цветным кольцам на резисторе его номинал и допустимое отклонение сопротивления от его номинального значения. Цветную маркировку на резисторах следует читать слева направо. Как правило, первое кольцо расположено ближе к одному из выводов или шире чем остальные.
Термостат для климат-контроля
с дисплеем и удобным управлением. Кликните чтобы узнать подробнее.
Маркировка советских резисторов
Первым делом давайте разберемся с советскими резисторами.
Хоть ты что делай, а от советской электроники не убежишь. Поэтому, немного теории вам не повредит.
Первым взглядом мы должны оценить, какую максимальную мощность может рассеивать резистор. Сверху вниз, внизу на фото, резисторы по мощностям: 2 Ватта, 1 Ватт, 0.5 Ватт, 0.25 Ватт, 0.125 Ватт. На резисторах мощностью 1 и 2 Ватта пишут МЛТ-1 и МЛТ-2 соответственно.
МЛТ – это разновидность самых распространенных советских резисторов, от сокращенных названий Металлопленочный, Лакированный, Теплоустойчивый. У других же резисторов мощность можно прикинуть по габаритам. Чем больше резистор по габаритам, тем больше мощности он может рассеять в окружающее пространство.
Единицы измерения в МЛТэшках – Омы – обозначают как R или E. Килоомы – буковкой “К”, Мегаомы буковкой “М”. Здесь все просто. Например, 33Е (33 Ома); 33R (33 Ома); 47К (47 кОм); 510К (510 кОм); 1.0М (1 МОм). Есть также фишка такая, что буквы могут опережать цифры, например, K47 означает, что сопротивление равно 470 Ом, M56 – 560 Килоом. А иногда, чтобы не заморачиваться с запятыми, тупо толкают туда буковку, например. 4K3 = 4.3 Килоом, 1М2 – 1.2 Мегаома.
Давайте рассмотрим нашего героя. Смотрим сразу на обозначение. 1К0 или словами ” один ка ноль”. Значит, его сопротивление должно быть 1,0 Килоом.
Давайте убедимся, так ли это на самом деле?
Ну да, все сходится с небольшой погрешностью.
Цветовая маркировка резисторов
Чтобы определить значение сопротивления резистора с цветовой маркировкой, сначала надо повернуть его таким образом, чтобы его серебряная или золотая полосы находились справа, а группа других полосок — слева. Если же вы не можете найти серебряную или золотую полоску, то надо повернуть резистор таким образом, чтобы группа полосок находилась с левой стороны.
Проверка диодов мультиметром или тестером
Полупроводниковые диоды широко применяются в электрических схемах для преобразования переменного в постоянный ток, и обычно при ремонте изделий, после внешнего осмотра печатной платы в первую очередь проверяют диоды. Диоды изготавливают из германия, кремния и других полупроводниковых материалов.
По внешнему виду диоды бывают разной формы, прозрачные и цветные, в металлическом, стеклянном или пластмассовом корпусе. Но они всегда имеют два вывода и сразу бросаются в глаза. В схемах в основном применяются выпрямительные диоды, стабилитроны и светодиоды.
Условное обозначение диодов на схеме представляет собой стрелку, упирающуюся в отрезок прямой линии. Обозначается диод латинскими буквами VD, за исключением светодиодов, которые обозначаются буквами HL, В зависимости от назначения диодов в схему обозначения вносятся дополнительные элементы, что и отражено на чертеже выше. Так как в схеме диодов бывает больше одного, то для удобства после букв VD или HL добавляется порядковый номер.
Проверить диод гораздо легче, если представлять, как он работает. А работает диод как ниппель. Когда Вы надуваете мячик, резиновую лодку или автомобильное колесо, то воздух в них входит, а обратно его не пускает ниппель.
Диод работает точно также. Только пропускает в одну сторону не воздух, а электрический ток. Поэтому для проверки диода нужен источник постоянного тока, которым и может служить мультиметр или стрелочный тестер, так как в них установлена батарейка.
Выше представлена структурная схема работы мультиметра или тестера в режиме измерения сопротивления. Как видно, на клеммы подается напряжение постоянного тока определенной полярности. Плюс принято подавать на красную клемму, а минус на черную. При прикосновении к выводам диода таким образом, что плюсовой выход прибора окажется на анодном выводе диода, а минусовой на катоде диода, то ток через диод пойдет. Если щупы поменять местами, то диод ток не пропустит.
Диод обычно может иметь три состояния – быть исправным, пробитым или в обрыве. При пробое диод превращается в отрезок провода, будет пропускать ток при любом порядке прикосновении щупов. При обрыве напротив, ток не будет идти никогда. Редко, но бывает и еще одно состояние, когда изменяется сопротивление перехода. Такую неисправность можно определить по показаниям на дисплее.
По выше приведенной инструкции можно проверять выпрямительные диоды, стабилитроны, диоды Шоттки и светодиоды, как с выводами, так и в SMD исполнении. Рассмотрим, как проверять диоды на практике.
В первую очередь необходимо, соблюдая цветовую маркировку, вставить в мультиметр щупы. Обычно в COM вставляется черный провод, а в V/R/f – красный (это плюсовой вывод батарейки). Далее необходимо установить переключатель режимов работы в положение прозвонки (если есть такая функция измерений), как на фотографии или в положение 2kOm. Включить прибор, сомкнуть концы щупов и убедиться в его работоспособности.
Практику начнем с проверки древнего германиевого диода Д7, этому экземпляру уже 53 года. Диоды на основе германия сейчас практически не выпускают из-за высокой стоимости самого германия и низкой предельной рабочей температуры, всего 80-100°С. Но эти диоды имеют самое маленькое падение напряжения и уровень собственных шумов. Их очень ценят сборщики ламповых усилителей звука. В прямом включении падение напряжения на диоде из германия составляет всего 0,129 В. Стрелочный тестер покажет приблизительно 130 Ом. При смене полярности мультиметр показывает 1, стрелочный тестер покажет бесконечность, что означает очень большое сопротивление. Данный диод исправен.
Порядок проверки кремниевых диодов не отличается от проверки сделанных из германия. На корпусе диода, как правило, помечается вывод катода, это может быть окружность, линия или точка. В прямом включении падение на переходе диода составляет около 0,5 В. У мощных диодов напряжение падения меньше, и составляет около 0,4 В. Точно также, проверяются стабилитроны и диоды Шоттки. Падение напряжения у диодов Шоттки составляет около 0,2 В.
У мощных светодиодов на прямом переходе падает более 2 В и прибор может показывать 1. Но тут сам светодиод является индикатором исправности. Если при прямом включении видно, даже самое слабое свечение светодиода, то он исправен.
Надо заметить, что некоторые типы мощных светодиодов состоят из цепочки включенных последовательно несколько светодиодов и внешне это не заметно. Такие светодиоды иногда имеют падение напряжения до 30 В, и проверить их возможно только от блока питания с напряжением на выходе более 30В и включенным последовательно со светодиодом токоограничивающим резистором.
Общее понятие
Резисторы выступают в роли пассивного элемента электроцепи, но используются практически в каждой из них. Обладая постоянным или переменным сопротивлением, они преобразовывают напряжение в силу тока или наоборот, поскольку, согласно закону Ома, эти величины напрямую связаны с сопротивлением.
Таким образом, основным параметром резисторов будет выступать электрическое сопротивление, которое принято измерять в Омах.
Обозначение на схемах
На схемах эти элементы могут обозначаться по-разному, в зависимости от страны и номинальной мощности рассеивания. Но в основу заложены простейшие формы, представленные на рисунке.
И если со странами всё понятно, то мощность рассеивания может вызвать вопросы. А это, не что иное, как мощность, которую сможет рассеять сопротивление без вреда для себя. Ведь во время протекания электричества через резистор образуется мощность, которая его нагревает. Если она выше допустимой величины, то последует его перегрев, что приведёт к выходу детали из строя.
Помимо стандартного обозначения, возможны некоторые вариации для более точного отображения номинала. Так, в прямоугольнике, схематически обозначающем сопротивление, могут находиться римские цифры или полоски:
- Три наклонные обозначают, что резистор 0,05 Вт;
- Две наклонные – 0,125 Вт;
- Одна наклонная полоса – 0,25 Вт;
- Одна горизонтальная полоска – 0,5 Вт;
- Римская 1 – 1 Вт;
- Римская цифра 2 – 2 Вт;
- Римская 5 – 5 Вт.
Номинальный ряд
Ненормированные допуски в широком поле обуславливали проблемы с подбором сопротивлений и последующей их заменой. И все эти неудобства вынудили прибегнуть к образованию номинального ряда, в результате чего были установлены общие для производства резисторов номинальные допуски.
Чтобы понять ценность образования такого ряда, можно в качестве примера взять сопротивление на 100 Ом, которое имеет номинальное отклонение в 10%. Например, в конкретном случае необходим резистор на 105 Ом. Но, учитывая десятипроцентное отклонение от ста Ом в обе стороны, несложно понять, что это же сопротивление подойдёт и для требуемых 105 Ом, а это исключает необходимость делать деталь для этого значения.
И это куда более удобно, ведь те же 100 и 105 Ом будут входить в этот интервал. А помимо них, сюда смогут войти и множество других.
Ом — единица измерения сопротивления в системе СИ
Из формулы (2) следует, что сопротивление численно равно отношению напряжения на концах участка к силе тока, который в нем течет. Единицу измерения сопротивления можно определить как:
Единица измерения электрического сопротивления в Международной системе единиц (СИ) имеет собственное название — ом (Ом). Один ом равен электрическому сопротивлению участка цепи, в котором течет ток силой 1 ампер и вызывает на концах участка падение напряжения равное одному вольту. Единица сопротивления названа в честь немецкого ученого Г. Ома.
Ом — единица сопротивления, является производной единицей в системе СИ, через основные единицы, она выражается как:
1 Ом — это довольно малая величина сопротивления, поэтому на практике часто используют стандартные для системы СИ десятичные кратные приставки, например, кОм (килоом): 1кОм=1000 Ом; МОм (мегаом): $1\ МОм={10}^6Ом.$
Закон Ома для цепи
Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит. Возьмем замкнутую электрическую цепь и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).
Итак, закон Ома для рассматриваемого участка цепи имеет вид:
φ1-φ2=I*R, где
- I – ток, протекающий по участку цепи.
- R – сопротивление этого участка.
- φ1-φ2 – разность потенциалов между точками 1-2.
Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R. Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).
В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:
- U1=I*R1
- U2=I*R2
- Un=I*Rn
- U=I*(R1+R2+…+Rn
Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:
U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn
Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.
Закон Ома для участка цепи.
Для ЭДС
Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.
Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.
Для полной цепи
Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.
Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.
Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:
I = U / (R + r)
Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.
Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.
https://youtube.com/watch?v=f2rpF5ztAr0
Ом, как единица измерения:
Ом – единица измерения электрического сопротивления в Международной системе единиц (СИ), названная в честь немецкого учёного Георга Симона Ома.
Ом как единица измерения имеет русское обозначение – Ом и международное обозначение – Ω.
Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.
1 ом представляет собой электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила.
Ом = (кг · м2) / (А2· с3) = В / А.
1 Ом = (1 кг · 1 м2) / (1 А2· 1 с3) = 1 В / 1 А.
В Международную систему единиц ом введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «ом» пишется со строчной буквы, а её обозначение — с заглавной (Ом). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием ома.
Единицей, обратной ому, является сименс — единица измерения электрической проводимости в СИ.
Общие положения
В соответствии с ГОСТ 28883-90 и международным стандартом, сопротивление резисторов маркируется в виде цветных колец. Каждому цветному кольцу соответствует определенный цифровой код. Маркировка с тремя полосками используется для резисторов с точностью 20%, с четырьмя полосками – с точностью 5% и 10%, с пятью – с точностью до 0.005%. Шестая полоска на резистора показывает температурный коэффициент сопротивления (ТКС). Цветная маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Первая полоса при этом – ближайшая к выводу резистора. Если из-за малого размера резистора цветную маркировку нельзя сдвинуть к одному из выводов, то первый знак делается полосой с шириной приблизительно вдвое большей, чем остальные. Цветовая маркировка резисторов зарубежных производителей, которые имеют наибольшее распространение в нашей стране, состоит чаще всего из четырех цветовых колец. Сопротивление резистора определяют по первым трем кольцам. Первые два кольца – это цифры, а третье кольцо – множитель. Четвертое кольцо представляет допустимое отклонение сопротивления резистора от его номинального значения.
Цветовая маркировка резисторов с 3 полосами.
Цвет первых двух полос означает первые цифры сопротивления. Третья полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых двух цифр. Точность резисторов с 3-мя полосами – 20%.
Сопротивление резистора с тремя полосами можно найти по формуле:
R=(10A+B)10C,
где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы.
Цветовая маркировка резисторов с 4 полосами.
Цвет первых двух полос означает первые цифры сопротивления. Третья полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых двух цифр. Четвертая полоса означает точность резистора в процентах. Она может быть серебристого или золотистого цвета, что значит допуск в 10% или 5% соответственно.
Сопротивление резистора с четырьмя полосами можно найти по формуле:
R=(10A+B)10C,
где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы.
Цветовая маркировка резисторов с 5 полосами.
Цвет первых трех полос означает цифры сопротивления. Четвертая полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых трех цифр. Пятая полоса означает точность резистора в процентах.
Сопротивление резистора с пятью полосами можно найти по формуле:
R=(100A+10B+C)10D,
где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы; D – номер цвета четвертой полосы.
Цветовая маркировка резисторов с 6 полосами.
Цвет первых трех полос означает цифры сопротивления. Четвертая полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых трех цифр. Пятая полоса означает точность резистора в процентах. Шестая полоса означает температурный коэффициент сопротивления.
Сопротивление резистора с шестью полосами можно найти по формуле:
R=(100A+10B+C)10D,
где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы; D – номер цвета четвертой полосы.
Маркировка SMD резисторов
С маркировкой SMD немного сложнее, размеры SMD резисторов не позволяют нанести на них цветовые кольца либо написать номинал. Поэтому маркируются они 3 или 4 цифрами, кроме резисторов типоразмера 0402. Значения резисторов типа 0402 можно найти в таблице. Остальные имеют следующий порядок маркировки.
Резисторы с допуском до 10 % имеют в маркировке 3 цифры, где первые 2 цифры – это номинал резистора, а последняя – обозначает десятичное значение.
Пример маркировки SMD резисторов:
Резистор с 3 символами
Резистор с 4 символами
Бывают также smd резистор без маркировки, таких резисторов сопротивление равно 0, нужны они просто чтобы заполнить пустое пространство в плате, их еще называют нулевыми резисторами.
Использованием кодов в настоящее время – самый популярный способ маркировки SMD резисторов, основанный на табличных кодах каждого показателя.
Что такое сопротивление?
Сопротивление (электрическое сопротивление) – это свойство какого-либо проводника оказывать сопротивление электрическому току, проходящему через него. Вот так все просто!
Давайте проведем аналогию с гидравликой. В нашем случае получается, что проводник электрического тока – это шланг или труба. Теперь давайте подумаем, какой из предметов будет оказывать бОльшее сопротивление потоку воды: садовый шланг или нефтяная труба?
Понятное дело, что садовый шланг, так как его диаметр в разы меньше, чем диаметр нефтяной трубы.
Тогда другой вопрос. Какой шланг будет обладать бОльшим сопротивлением потоку воды с учетом того, что их длины и диаметры равны?
Разумеется, гофрированный. Вода будет “цепляться” за его стенки, что приведет к тому, что они будут мешать потоку воды.
Тогда еще вот такая задачка. Есть два абсолютно одинаковых шланга, но один длиннее, а другой короче. Какой из шлангов будет оказывать бОльшее сопротивление потоку воды?
Думаю тот, который длиннее. Ответ очевиден.
Расшифровка маркировки советских резисторов
Маркировка советских резисторов МЛТ-1 и МЛТ-2 имеет буквенно-числовое обозначение и содержит:
- две цифры и букву;
- три цифры и букву.
Буквенный код:
- омы – R или Е;
- килоомы – К ;
- мегаомы – М.
Порядок расположения цифрового кода:
- номинал из целого числа ставился перед буквой – 33К (33 ома);
- номинал меньше единицы ставился после буквы – R 27 (0,27 ом), М68 (0,68 МОм или 680 КОм);
- номинал из целого числа с десятичной дробью разбивался на две части – целое число перед буквой, десятичную дробь после – 5K6 (5,6 КОм).
Еще одна цифра на корпусе означала отклонение от номинала сопротивления.
МЛТ-1
На корпус наносился код, которые обозначал:
- МЛТ – металлопленочный резистор с лаковым слоем термоустойчивый;
- 1– мощность рассеивания в ваттах;
- 47К – сопротивление 47 Ком;
- 5% – допустимое отклонение от номинала 5%.
Другие
Маленький размер корпуса резисторов мощностью менее 0,25 ватт не позволял нанести буквенно-числовой код, поэтому для них применялась маркировка, состоящая из четырех полос (колец) разного цвета.
Первая полоса наносилась ближе к краю резистора, остальные так, чтобы не затруднять чтение кода.
Цветовые полоски располагались слева направо и обозначали:
- Первая, вторая – номинал.
- Третья – множитель.
- Четвертая – отклонение от номинала в %.
Каждая цифра от 0 до 9 имела цветной код:
- черный – 0;
- коричневый – 1;
- красный – 2;
- оранжевый – 3;
- желтый – 4;
- зеленый – 5;
- синий – 6;
- фиолетовый – 7;
- серый – 8;
- белый – 9.
После цифр располагалась полоса, символизирующая десятичный множитель – на которое надо умножить число, образованное первыми двумя полосками:
- серебристый – 0,01;
- золотой – 0,1;
- черный – 10;
- коричневый – 100;
- красный – 1000;
- оранжевый – 10000;
- желтый – 100 000;
- зеленый – 10 000 000;
- синий – 1 000 000;
- фиолетовый – 10 000 000;
- серый – 100 000 000;
- белый – 1000 000 000.