Закон ома для неоднородного участка цепи

Для постоянного тока

Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.

I = U / R где I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)
R — сопротивление, измеряется в Омах, (Ω)

Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, — «Не знаешь закон Ома, — сиди дома..».

Помимо закона Ома, важнейшим является понятие электрической мощности, P:

Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.

P = I × U где P — эл. мощность, измеряемая в Ваттах, (W)
I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)

Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Сила тока, I= U/R P/U √(P/R)
Напряжение, U= I×R P/I √(P×R)
Сопротивление, R= U/I P/I² U²/P
Мощность, P= I×U I²×R U²/R

Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.

Наиболее распространенные множительные приставки:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.

Закон Ома для цепи

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит. Возьмем замкнутую электрическую цепь и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R, где

  • I – ток, протекающий по участку цепи.
  • R – сопротивление этого участка.
  • φ1-φ2 – разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R. Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии). 

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

Закон Ома для участка цепи.

Для ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

Для полной цепи

Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:

I = U / (R + r)

Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.

Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.

https://youtube.com/watch?v=f2rpF5ztAr0

Детальное описание

Закон Георга показывает значение электричества в определенной сети, имеющее зависимость от сопротивления к нагрузке и внутренним элементам источника питания. Рассмотрим это детально.

Условное устройство, использующее электроэнергию (например, звуковой динамик) при подключении к источнику питания образует замкнутую цепь (рисунок 1). Подсоединим динамик к аккумулятору. Следующий через динамик ток тоже следует через источник питания. Поток заряженных частиц встретит сопротивление провода и внутренней электроники устройства, а также сопротивление аккумулятора (электролит внутри банки оказывает определенное воздействие на электрический ток). Исходя из этого, значение сопротивления закрытой сети складывается из сопротивления:

  • Источника питания;
  • Электрического устройства.

Подключение условного электрического прибора (динамика) к источнику питания (автомобильному аккумулятору)

Первый параметр называют внутренним, второй – внешним сопротивлением. Противодействие источника электричества маркируется символом r.

Представим, что по сети источник питания/электрическое устройство проходит определённый ток T. Для сохранения стабильного значения электричества внешней сети, в соответствии с законом, на её окончаниях должна наблюдаться потенциальная разность, которая равна R*T. Ток такой же величины проходит и внутри цепи. Вследствие этого – сохранение постоянного значения электричества внутри сети требует потенциальной разности на окончаниях сопротивления r. Она, согласно закону, должна равняться T*r. При сохранении стабильного тока в сети, значение электродвижущей силы равно:

E=T*r+T*R

Из формулы следует, что ЭДС равна сумме падения напряжений во внутренней и внешней сети. Если вынести значение T за скобки, получим:

Е=T(r+R)

или

T=E/(r+R)

Сверхпроводимость

Сверхпроводимость – это свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры меньше определённой, так называемой критической температуры.

Существует несколько сотен материалов, которые могут переходить в сверхпроводящее состояние при определённой температуре.

Ранее среди физиков бытовало мнение, что при уменьшении температуры сопротивление должно плавно уменьшаться, а при достижении температуры, близкой к абсолютному нулю, электроны вообще перестают двигаться, следовательно, ток перестанет течь по проводникам. Однако 8 апреля 1911 года  обнаружилось, что при температуре 3 К С электрическое сопротивление ртути практически равно нулю. Более точные измерения показали, что резкий спад сопротивления до нуля происходит при температуре 4,15 К.

Для постоянного электрического тока электрическое сопротивление сверхпроводника равно нулю. Это было продемонстрировано в ходе эксперимента, где в замкнутом сверхпроводнике был индуцирован электрический ток, который протекал в нём без затухания в течение 2,5 лет. Эксперимент был прерван забастовкой рабочих, подвозивших криогенную жидкость (сжиженный газ с температурой ниже 120 К).

В технике применяются сверхпроводники на основе сплавов ниобия (см. Рис. 7)

Отсутствие потерь на нагревание при прохождении постоянного тока через сверхпроводник делает привлекательным применение сверхпроводящих кабелей (см. Рис. 8) для доставки электричества, так как один такой тонкий кабель способен передавать мощность, которую традиционным методом можно передать с помощью цепи линий электропередач с несколькими более толстыми кабелями.

Рис. 7. Сплав ниобия

Проблемами, препятствующими широкому использованию сверхпроводящих кабелей, являются высокая стоимость кабеля и его обслуживание (через сверхпроводящие линии необходимо постоянно перекачивать жидкий азот). Однако в Нью-Йорке в конце июня 2008 года была запущена первая коммерческая сверхпроводящая линия электропередач.

Рис. 8. Сверхпроводящий кабель

Вольтметр и амперметр

Определение 13

Применяются измерительные приборы для напряжения тока в электрических цепях, называемые вольтметрами и амперметрами.

Определение 14

Вольтметр измеряет разности потенциалов, приложенные к его клеммам.

Подключение к цепи производится параллельно. Каждый из приборов такого типа имеет внутреннее сопротивление RB. Чтобы перераспределение токов не было заметно, нужно проследить за тем, чтобы внутреннее сопротивление было больше, чем на участках подключаемой цепи. На рисунке 1.8.4 изображена такая цепь, тогда данное условие можно записать как RB≫R1.

Это означает, что ток IB=∆φcdRB, протекающий через вольтметр, меньше тока I=∆φcdR1, проходящего по заданному участку цепи.

Внутри прибора также не действуют сторонние силы, поэтому разность потенциалов его клемм совпадет со значением напряжения. Отсюда следует, что вольтметр измеряет напряжение.

Определение 15

Амперметр предназначается для измерения силы тока в цепи.

Его подключение к цепи производится последовательно для прохождения всего измеряемого тока. Внутреннее сопротивление прибора обозначается как RA. В отличие от вольтметра должно иметь малые значения относительно полного сопротивления цепи. На рисунке 1.8.4 показано, что сопротивление амперметра подходит к условию RA≪(r+R1+R2). При включении прибора ток в цепи не должен изменяться.

Измерительные приборы подразделяют на стрелочные и цифровые, последние из которых являются сложными электронными устройствами и способны давать максимально точные значения при измерении.

Рисунок 1.8.4. Включение амперметра (А) и вольтметра (В) в электрическую цепь.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Условные обозначения источников электрической энергии и элементов цепей

Условное обозначение Элемент
Идеальный источник ЭДС
Е – электродвижущая сила, Е = const
Ro = 0 – внутреннее сопротивление
Идеальный источник тока I = const
Rвн- внутреннее сопротивление источника тока,
Rвн>>Rнаг
Активное сопротивление
R = const
Индуктивность L = const
Емкость С = const

К химическим источникам тока относят гальванические элементы и аккумуляторы. В них заряды переносятся в результате химических реакций. При этом в гальваническом элементе реагенты расходуются необратимо, а в аккумуляторе они могут восстанавливаться путем пропускания через аккумулятор электрического тока противоположного направления от других источников.

Источники электрической энергии относятся к группе активных элементов электротехнических устройств. Если Rо=0 и электродвижущая сила (ЭДС) Е=const, то источник называется идеальным. Аккумуляторная батарея по своим параметрам близка к идеальному источнику ЭДС.

К группе пассивных элементов относятся: активное сопротивление R, индуктивность L и емкость С.

В электротехнических устройствах одновременно протекают три энергетических процесса:

1 В активном сопротивлении в соответствии с законом Джоуля – Ленца происходит преобразование электрической энергии в тепло.

Мощность, по определению равна отношению работы к промежутку времени, за который эта работа совершается. Следовательно, мощность тока для участка цепи

p = A/t = ui

Полная мощность, вырабатываемая генератором, равна

где R- полное сопротивление замкнутой цепи, называемое омическим или активным;

Р, I – мощность и ток в цепи постоянного тока.

р, i, и – мгновенные значения активной мощности, тока и напряжения в цепи переменного тока,

g – активная проводимость или величина, обратная сопротивлению g=1/R измеряется в сименсах (См).

В соответствии с законом сохранения энергии работа есть мера изменения различных видов энергии. Так, в электродвигателе за счет работы тока возникает механическая энергия, протекают химические реакции и т. д. На резисторах происходит необратимое преобразование энергии электрического тока во внутреннюю энергию проводника.

Если в проводнике под действием тока не происходит химических реакций, то температура проводника должна измениться. Изменение внутренней энергии проводника (количество теплоты) Q равно работе А, которую совершает суммарное поле при перемещении зарядов:

Q = А = uit

Воспользовавшись законом Ома, получим два эквивалентных выражения:

Это и есть закон Джоуля – Ленца.

Если нужно сравнить два резистора по характеру тепловых процессов, происходящих в них, то нужно предварительно выяснить: протекает ли по ним одинаковый ток или они находятся под одинаковым напряжением?

Если по двум резисторам протекают одинаковые токи, то согласно формуле за одно и то же время больше возрастает внутренняя энергия резистора с большим сопротивлением. С таким случаем мы встречаемся, например, в цепи с последовательным соединением резисторов. Последнее обстоятельство следует учитывать при включении в сеть нагрузки (электроплиток, утюгов, электродвигателей и т. д.). Сопротивление подводящих проводов при этом должно быть значительно меньше, чем сопротивление нагрузки. При несоблюдении этого условия в проводах выделится большое количество теплоты, что может привести к их загоранию.

Если же оба резистора находятся под одинаковым напряжением, то согласно формуле быстрее будет нагреваться резистор с меньшим сопротивлением. Такой эффект, в частности, наблюдают при параллельном соединении резисторов.

Термин “сопротивление” применяется для условного обозначения элемента электрической цепи и для количественной оценки величины R.

Сопротивление измеряется в омах (Ом). 1 Ом – это сопротивление проводника, сила тока в котором равна 1 А, если на концах его поддерживается разность потенциалов 1 В:

1 Ом = 1 В/1 А

Электрическое сопротивление R материалов с изменением температуры меняется. Сопротивление металлических проводников линейно возрастает с температурой. У полупроводников и электролитов с увеличением температуры удельное сопротивление уменьшается, причем нелинейно.

Для сравнения проводников по степени зависимости их сопротивления от температуры t вводится величина a, называемая температурным коэффициентом сопротивления. Отсюда

Для практических расчетов в электрических цепях величину R можно принимать постоянной. В этом случае зависимость напряжения на сопротивлении R от силы тока (вольт-амперная характеристика) будет называться линейной. Электрические цепи, в которые включены постоянные по величине сопротивления, также будут линейными.

Второй закон ома определение

Закон ома для замкнутой цепи говорит о том что. Величина тока в замкнутой цепи, которая состоит из источника тока обладающего внутренним сопротивлением, а также внешним нагрузочным сопротивлением. Будет равна отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений.

Закон Ома 2

В сложных цепях встречаются соединения, которые нельзя отнести ни к последовательным, ни к параллельным. К таким соединениям относятся трехлучевая звезда и треугольник сопротивлений (рис.1.3).

Их взаимное эквивалентное преобразование во многих случаях позволяет упростить схему и свести ее к схеме смешанного (параллельного и последовательного) соединения сопротивлений.

При этом необходимо определенным образом пересчитать сопротивления элементов звезды или треугольника.

Закон Ома

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Закон Ома для «чайников»: понятие, формула, объяснение

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

2 Закон ома определение

Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.

Рекомендуем прочесть:  Золото могут забрать приставы с ломбарда

Закон Ома для участка цепи

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах.

Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы.

Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

Реферат: Закон Ома 2

В сложных цепях встречаются соединения, которые нельзя отнести ни к последовательным, ни к параллельным. К таким соединениям относятся трехлучевая звезда и треугольник сопротивлений (рис.1.3).

Их взаимное эквивалентное преобразование во многих случаях позволяет упростить схему и свести ее к схеме смешанного (параллельного и последовательного) соединения сопротивлений.

При этом необходимо определенным образом пересчитать сопротивления элементов звезды или треугольника.

Школьная Энциклопедия

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока, а силы — сторонними силами.

Что такое закон Ома

Простейшим образом создать такое поле может обыкновенная батарейка. Если на конце проводника недостаток электронов, то он обозначается знаком «+», если избыток, то «-».

Электроны, имеющие всегда отрицательный заряд, естественно, устремятся к плюсу. Так в проводнике рождается электрический ток, т. е. направленное перемещение электрических зарядов.

Чтобы его увеличить, необходимо усилить электрическое поле в проводнике. Или, как говорят, приложить к концам проводника большее напряжение.

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию

v. Напpимеp, в электpонных лампах закон Стокса для силы сопpотивления, действующей на электpон, не выполняется и ускоpение электpонов в электрическом поле нельзя считать pавным нулю. Во-втоpых, необходимо, чтобы плотность носителей тока n не зависела от напpяженности поля.

Напpимеp, в коpонном pазpяде пеpвое условие выполняется, но не выполняется втоpое. В этом pазpяде ток пеpеносится ионами, котоpые обpазуются в непосpедственной близости к остpию коpониpующего электpода и движутся затем чеpез весь пpомежуток.

Их плотность в этом пpомежутке существенно зависит от напpяженности поля.

Электрический ток и его характеристики

Определение 9

Проводники, которые подчинены закону Ома, получили название линейных.

Для изображения графической зависимости силы тока I от U (графики называют вольт-амперными характеристиками, ВАХ) используется прямая линия, проходящая через начало координат.

Существуют устройства, не подчиняющиеся закону Ома. К ним относят полупроводниковый диод или газоразрядную лампу. Металлические проводники имеют отклонения от закона Ома при токах большой силы. Это связано с ростом температуры.

Определение 10

Участок цепи, содержащий ЭДС, позволяет записывать закон Ома таким образом:

IR=U12=φ1-φ2+δ=∆φ12+δ.

Формула получила название обобщенного закона Ома или закон Ома для неоднородного участка цепи.

Рисунок 1.8.2 показывает замкнутую цепь с постоянным током, причем ток цепи (cd) считается однородным.

Рисунок 1.8.2. Цепь постоянного тока.

Исходя из закона Ома IR=∆φcd, участок (ab) содержит источник тока с ЭДС, равной δ. Тогда для неоднородного участка формула примет вид Ir=∆φab+δ. Сумма обоих равенств дает в результате выражение I(R+r)=∆φcd+∆φab+δ. Но ∆φcd=∆φba=-∆φab, тогда I=δR+r.

Определение 11

Формула I=δR+r выражает закон Ома для полной цепи. Запишем ее, как определение: сила тока в полной цепи равняется электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Рисунок 1.8.2 говорит о том, что R неоднородного тела может быть рассмотрено как внутреннее сопротивление источника тока. Тогда (ab) участок будет являться внутренним участком источника.

Определение 12

При замыкании a и b с помощью проводника с малым по сравнению с внутренним сопротивлением источника получим, что в цепи имеется ток короткого замыкания Iкз=δr.

Сила тока короткого замыкания является максимальной, получаемой от источника с ЭДС и внутренним сопротивлением r. Если внутренне сопротивление мало, тогда ток короткого замыкания может вызвать разрушение электрической цепи или источника.

Пример 1

Свинцовые аккумуляторы автомобилей имеют силу тока короткого замыкания в несколько сотен ампер. Особую опасность представляют замыкания в осветительных сетях, которые имеют подпитку от подстанций. Во избежание разрушительных действий предусмотрены предохранители или автоматы для защиты сетей.

Чтобы при превышении допустимых значений силы тока не произошло короткого замыкания, используют внешнее сопротивление. Если сопротивление r равняется сумме внутреннего и внешнего сопротивления источника, сила тока не будет превышать норму.

При наличии разомкнутой цепи разность потенциалов на полюсах разомкнутой батареи равняется ее ЭДС. Когда внешнее R включено и ток I подается через батарею, то разность потенциалов на полюсах запишется, как ∆φba=δ-Ir.

Рисунок 1.8.3 дает точное схематическое изображение источника постоянного тока с ЭДС, равной δ, внутренним r в трех режимах: «холостой ход», работа на нагрузку, режим короткого замыкания. E→ является напряженностью внутри электрического поля внутри батареи, a – силами, действующими на положительные заряды, Fст→– сторонней силой. Исчезновение электрического поля возникает при коротком замыкании.

Рисунок 1.8.3. Схематическое изображение источника постоянного тока: 1 – батарея разомкнута;2 – батарея замкнута на внешнее сопротивление R; 3 – режим короткого замыкания.

Закон Ома для цепи

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит. Возьмем замкнутую электрическую цепь и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R, где

  • I – ток, протекающий по участку цепи.
  • R – сопротивление этого участка.
  • φ1-φ2 – разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R. Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

Закон Ома для участка цепи.

Для ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит: Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

Для полной цепи

Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:

I = U / (R + r)

Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.

Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.

U — напряжение

Напряжение является еще одной важной единицей закона Ома, которая устанавливает объем работы, необходимой для перемещения заряда. Напряжение «V» измеряет электрический потенциал «Вольт», которым объект обладает по отношению к заряду

Подавая напряжение, выполняется работа, которая обеспечивает движение заряда. Количество заряда, известный как точечный заряд, его определение может быть выполнено следующим образом:

V = kq / (r • r), где:

  • V — электрический потенциал (V);
  • k — кулоновская постоянная = 8,99 × 10 9Н • м 2 • С −2;
  • q — заряд точки;
  • r — расстояние от точечного заряда (м).

Вам это будет интересно Виды и применение греющего электрического кабеля

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.

Последовательное соединение

Параллельное соединение

Схема

Резисторы следуют друг за другом

Между резисторами есть два узла

Узел — это соединение трех и более проводников

Сила тока

Сила тока одинакова на всех резисторах

I = I1 = I2

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

I = I1 + I2

Напряжение

Общее напряжение цепи складывается из напряжений на каждом резисторе

U = U1 + U2

Напряжение одинаково на всех резисторах

U = U1 = U2

Сопротивление

Общее сопротивление цепи складывается из сопротивлений каждого резистора

R = R1 + R2

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

1/R = 1/R1 + 1/R2 + … + 1/Rn

Общее сопротивление для двух параллельно соединенных резисторов

R = (R1 * R2)/R1 + R2

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

R = R1/n

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.

Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

R1 = 4 Ом, R2 = 2 Ом

Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

R = (R1 * R2)/R1 + R2 = 4*2/4+2 = 4/3 = 1 ⅓ Ом

Ответ: общее сопротивление цепи равно 1 ⅓ Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом

Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соеденены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Rламп = (R2 * R3)/R2 + R3 = 2*3/2+3 = 6/5 = 1,2 Ом

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи .

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.

Решение:

Найдем сначала сопротивление лампы.

Rлампы = R/2 = 10/2 = 5 Ом

Теперь найдем общее сопротивление двух параллельно соединенных резисторов.

Rрезисторов = (R * R)/R + R = R^2)/2R = R/2 = 10/2 = 5 Ом

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

I = ε/(R + r)

R + r = ε/I

r = ε/I — R

Подставим значения:

r = 12/0,5 — 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.