Таблицы цветовой маркировки резисторов
В данной статье речь пойдет об определении основных параметров для отечественных и зарубежных резисторов с помощью таблиц цветовой маркировки.
Чтобы запомнить цветную кодировку резисторов и других электронных компонентов, надо обратить внимание на то, что после черной полосы (0) и коричневой полосы (1) идет последовательность цветов радуги. Голубой и синий цвета в маркировке не различаются, так как цветовая маркировка резисторов изначально была разработана в англоязычных странах, где эти цвета произносятся одинаково
Маркировка наносится цветными кольцами. Она определяется в соответствии с требованиями Публикациями 62 МЭК. Читаются маркировочные знаки слева направо.
Резисторы с величиной допуска от 0,05 до 10% выполняются пятью цветовыми кольцами: первые три кольца – определяют величину сопротивления в омах, четвертое кольцо – множитель, пятое кольцо – допуск.
Также вы можете встретить резисторы с пятью полосами, но имеющие стандартную 5 или 10% точность. В этом случае: первые два кольца указывают на величину сопротивления в омах, третье – множитель, четвертое – точность, пятое – допуск.
Для резисторов с величиной допуска ±20% предусматривается маркировка с четырьмя цветовыми кольцами: первые три кольца – указывают на величину сопротивления в омах, четвертое кольцо – множитель.
Для резисторов с тремя цветовыми кольцами величина допуска не указывается. Для таких резисторов: первые два кольца – указывают на величину сопротивления в омах, третье кольцо – множитель.
Иногда для резисторов еще может указываться температурный коэффициент сопротивления (ТКС), в этом случае, резистор маркируется шестью цветовыми кольцами, шестое цветовое кольцо указывает на ТКС.
Особый случай использование цветовой маркировки резисторов – перемычки нулевого сопротивления. Они обозначаются одной черной (0) полоской по центру.
Визуально мощность резистора можно определить по его размерам.
Рассмотрим на примере как определяются основные параметры резисторов в соответствии с таблицей маркировки резисторов по ГОСТ 28883-90.
Пример
Определим параметры резистора с пятью кольцами: красный, фиолетовый, черный, коричневый, зеленый, номиналы резисторов указаны в Ом.
- первая цифра (1 — элемент) – 2;
- вторая цифра (2 — элемент) – 7;
- третья цифра (3 — элемент) – 0;
- множитель – 10;
- допуск,% – ±0,5.
Соответственно получается: 270 * 10 = 2700 Ом ±0,5% или 2,7 кОм ± 0,5%.
Ниже представлены таблицы маркировки зарубежных резисторов, таких производителей как: PHILIPS, Corning Glass Work (CGW), Panasonic, а также цветовая маркировка терморезисторов.
Для быстрого определения величины сопротивления резисторов по разным видам маркировок, можно воспользоваться программой Резистор v2.2
Всего наилучшего! До новых встреч на сайте Raschet.info.
Как используются резисторы?
Можно найти резисторы, используемые самыми различными способами. Они применяются не только для того, чтобы оказывать сопротивление электрическому току. Резисторы используются в делителях напряжения, для производства тепла, в цепях сопряжения и нагрузки, для управления усилением и для настройки постоянных времени. Практическое применение резисторов можно найти в цепях питания электрических тормозов поездов, здесь они помогают высвобождению всей накопленной кинетической энергии.
Серьезное сопротивление – взгляните на тормоза у этого поезда,
которые высвобождают накопленную кинетическую энергию
Вот еще несколько замечательных устройств, в которых используются эти универсальные резисторы:
-
Измерение величины электрического тока – вы можете измерять падение напряжения на включенном в цепь прецизионном резисторе с заранее известным сопротивлением. Расчет тока производится по закону Ома;
-
Питание светодиодов – слишком большой ток, протекающий через светодиод, сожжет этот прекрасный фонарик. Соединив последовательно со светодиодом резистор, вы можете контролировать силу тока через светодиод, обеспечивая его яркое сияние.
-
Питание электромоторов вентиляторов – сердцем системы автомобильной вентиляции является электромотор вентилятора печки. Специальный датчик используется для управления скоростью вращения крыльчатки вентилятора. Резистор такого типа, используемый в датчике, называется, (кто бы мог подумать!) резистором мотора вентилятора!
Резистор мотора вентилятора в ответе за движение воздуха в машине
Номинальная мощность резисторов
Поскольку резисторы рассеивают тепловую энергию по мере того, как электрические токи через них преодолевают «трение» их сопротивления, то резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждения. Естественно, эта номинальная мощность указывается в физических единицах измерения, «ватт». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше. Номинальная мощность любого резистора примерно пропорциональна его физическому размеру
Обратите внимание на первую фотографию резисторов, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная мощность. Также обратите внимание на то, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое не делает ничего, кроме сопротивления электрическому току, резисторы – чрезвычайно полезные устройства в схемах
Поскольку они просты и так часто используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и источноков питания.
Резюме
- Устройства, называемые резисторами, предназначены для обеспечения точного значения сопротивления в электрических цепях. Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (Вт).
- Номинальное сопротивление резистора не может быть определено по его физическому размеру, хотя судя по размеру можно сказать о приблизительном значении номинальной мощности. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
- Любое устройство, которое выполняет с помощью электроэнергии какую-либо полезную задачу, обычно называют нагрузкой. Иногда символ резисторов используется в схемах для обозначения неконкретизированной нагрузки, а не для реального резистора.
Оригинал статьи:
Resistors
Переменные резисторы
Переменные резисторы, как правило, имеют минимум три вывода: от концов токопроводящего элемента и от щеточного контакта, который может перемещаться по нему. С целью уменьшения размеров и упрощения конструкции токопроводящий элемент обычно выполняют в виде незамкнутого кольца, а щеточный контакт закрепляют на валике, ось которого проходит через его центр.
Таким образом, при вращении валика контакт перемещается по поверхности токопроводящего элемента, в результате сопротивление между ним и крайними выводами изменяется.
В непроволочных переменных резисторах обладающий сопротивлением то-копроводящий слой нанесен на подковообразную пластинку из гетинакса или текстолита (резисторы СП, СПЗ-4) или впрессован в дугообразную канавку керамического основания (резисторы СПО).
В проволочных резисторах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе. Для надежного соединения между обмоткой и подвижным контактом провод зачищают на глубину до четверти его диаметра, а в некоторых случаях и полируют.
Существуют две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования тока в цепи, и тогда регулируемый резистор называют реостатом, в другом — для регулирования напряжения, тогда его называют потенциометром. Показанное на рис. 5 условное графическое обозначение используют, когда необходимо изобразить реостат в общем виде.
Для регулирования тока в цепи переменный резистор можно включить диумя выводами: от щеточного контакта и одного из концов токопроводящего элемента (рис. 6,а). Однако такое включение не всегда допустимо.
Рис. 5. Реостаты и переменные резисторы – условное обозначение.
Если, например, в процессе регулирования случайно нарушится соединение щеточного контакта с токопроводящим элементом, электрическая цепь ока-1 жется разомкнутой, а это может явиться причиной повреждения при
бора. Чтобы исключить такую возможность, второй вывод токопроводящего элемента соединяют с выводом щеточного контакта (рис. 6,б). В этом случае даже при нарушении соединения электрическая цепь не будет разомкнута.
Общее обозначение потенциометра (рис. 6,в) отличается от символа реостата без разрыва цепи только отсутствием соединения выводов между собой.
Рис. 6. Обозначение потенциометра на принципиальных схемах.
К переменным резисторам, применяемым в радиоэлектронной аппаратуре, часто предъявляются требования по характеру изменения сопротивления при повороте их оси.
Так, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между выводом щеточного контакта и правым (если смотреть со стороны этого контакта) выводом токопроводящего элемента изменялось по показательному (обратному логарифмическому) закону.
Только в этом случае наше ухо воспринимает равномерное увеличение громкости при малых и больших уровнях сигнала. В измерительных генераторах сигналов звуковой частоты, где в качестве частотозадающих элементов часто используют переменные резисторы, также желательно, чтобы их сопротивление изменялось по логарифмическому или показательному закону.
Если это условие не выполнить, шкала генератора получается неравномерной, что затрудняет точную установку частоты.
Промышленность выпускает непроволочные переменные резисторы, в основном, трех групп:
- А — с линейной,
- Б — с логарифмической,
- В — с обратно-логарифмической зависимостью сопротивления между правым и средним выводами от угла поворота оси ф (рис. 47,а).
Резисторы группы А используют в радиотехнике наиболее широко, поэтому характеристику изменения их сопротивления на схемах обычно не указывают. Если же переменный резистор нелинейный (например, логарифмический) и это необходимо указать на схеме, символ резистора перечеркивают знаком нелинейного регулирования, возле которого (внизу) помещают соответствующую математическую запись закона изменения.
Рис. 7. Переменный резистор с обратно-логарифмической зависимостью сопротивления.
Резисторы групп Б и В конструктивно отличаются от резисторов группы А только токопроводящим элементом: на подковку таких резисторов наносят токопроводящий слой с удельным сопротивлением, меняющимся по ее длине. В проволочных резисторах форму каркаса выбирают такой, чтобы длина витка высокоомного провода менялась по соответствующему закону (рис. 7,6).
Резисторы постоянного сопротивления (постоянные резисторы).
Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.
Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные.
2.1. Непроволочные резисторы.
Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки, нанесенной на керамическое основание.
Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций. Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.
В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).
Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.
2.2. Проволочные резисторы.
Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.
Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.
Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.
По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.
Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.
С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.
Таблица кодов SMD резисторов и их значений
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
R10 | 0.1 Ом | 1R0 | 1 Ом | 100 | 10 Ом | 101 | 100 Ом |
R11 | 0.11 Ом | 1R1 | 1.1 Ом | 110 | 11 Ом | 111 | 110 Ом |
R12 | 0.12 Ом | 1R2 | 1.2 Ом | 120 | 12 Ом | 121 | 120 Ом |
R13 | 0.13 Ом | 1R3 | 1.3 Ом | 130 | 13 Ом | 131 | 130 Ом |
R15 | 0.15 Ом | 1R5 | 1.5 Ом | 150 | 15 Ом | 151 | 150 Ом |
R16 | 0.16 Ом | 1R6 | 1.6 Ом | 160 | 16 Ом | 161 | 160 Ом |
R18 | 0.18 Ом | 1R8 | 1.8 Ом | 180 | 18 Ом | 181 | 180 Ом |
R20 | 0.2 Ом | 2R0 | 2 Ом | 200 | 20 Ом | 201 | 200 Ом |
R22 | 0.22 Ом | 2R2 | 2.2 Ом | 220 | 22 Ом | 221 | 220 Ом |
R24 | 0.24 Ом | 2R4 | 2.4 Ом | 240 | 24 Ом | 241 | 240 Ом |
R27 | 0.27 Ом | 2R7 | 2.7 Ом | 270 | 27 Ом | 271 | 270 Ом |
R30 | 0.3 Ом | 3R0 | 3 Ом | 300 | 30 Ом | 301 | 300 Ом |
R33 | 0.33 Ом | 3R3 | 3.3 Ом | 330 | 33 Ом | 331 | 330 Ом |
R36 | 0.36 Ом | 3R6 | 3.6 Ом | 360 | 36 Ом | 361 | 360 Ом |
R39 | 0.39 Ом | 3R9 | 3.9 Ом | 390 | 39 Ом | 391 | 390 Ом |
R43 | 0.43 Ом | 4R3 | 4.3 Ом | 430 | 43 Ом | 431 | 430 Ом |
R47 | 0.47 Ом | 4R7 | 4.7 Ом | 470 | 47 Ом | 471 | 470 Ом |
R51 | 0.51 Ом | 5R1 | 5.1 Ом | 510 | 51 Ом | 511 | 510 Ом |
R56 | 0.56 Ом | 5R6 | 5.6 Ом | 560 | 56 Ом | 561 | 560 Ом |
R62 | 0.62 Ом | 6R2 | 6.2 Ом | 620 | 62 Ом | 621 | 620 Ом |
R68 | 0.68 Ом | 6R8 | 6.8 Ом | 680 | 68 Ом | 681 | 680 Ом |
R75 | 0.75 Ом | 7R5 | 7.5 Ом | 750 | 75 Ом | 751 | 750 Ом |
R82 | 0.82 Ом | 8R2 | 8.2 Ом | 820 | 82 Ом | 821 | 820 Ом |
R91 | 0.91 Ом | 9R1 | 9.1 Ом | 910 | 91 Ом | 911 | 910 Ом |
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
102 | 1 кОм | 103 | 10 кОм | 104 | 100 кОм | 105 | 1 МОм |
112 | 1.1 кОм | 113 | 11 кОм | 114 | 110 кОм | 115 | 1.1 МОм |
122 | 1.2 кОм | 123 | 12 кОм | 124 | 120 кОм | 125 | 1.2 МОм |
132 | 1.3 кОм | 133 | 13 кОм | 134 | 130 кОм | 135 | 1.3 МОм |
152 | 1.5 кОм | 153 | 15 кОм | 154 | 150 кОм | 155 | 1.5 МОм |
162 | 1.6 кОм | 163 | 16 кОм | 164 | 160 кОм | 165 | 1.6 МОм |
182 | 1.8 кОм | 183 | 18 кОм | 184 | 180 кОм | 185 | 1.8 МОм |
202 | 2 кОм | 203 | 20 кОм | 204 | 200 кОм | 205 | 2 МОм |
222 | 2.2 кОм | 223 | 22 кОм | 224 | 220 кОм | 225 | 2.2 МОм |
242 | 2.4 кОм | 243 | 24 кОм | 244 | 240 кОм | 245 | 2.4 МОм |
272 | 2.7 кОм | 273 | 27 кОм | 274 | 270 кОм | 275 | 2.7 МОм |
302 | 3 кОм | 303 | 30 кОм | 304 | 300 кОм | 305 | 3 МОм |
332 | 3.3 кОм | 333 | 33 кОм | 334 | 330 кОм | 335 | 3.3 МОм |
362 | 3.6 кОм | 363 | 36 кОм | 364 | 360 кОм | 365 | 3.6 МОм |
392 | 3.9 кОм | 393 | 39 кОм | 394 | 390 кОм | 395 | 3.9 МОм |
432 | 4.3 кОм | 433 | 43 кОм | 434 | 430 кОм | 435 | 4.3 МОм |
472 | 4.7 кОм | 473 | 47 кОм | 474 | 470 кОм | 475 | 4.7 МОм |
512 | 5.1 кОм | 513 | 51 кОм | 514 | 510 кОм | 515 | 5.1 МОм |
562 | 5.6 кОм | 563 | 56 кОм | 564 | 560 кОм | 565 | 5.6 МОм |
622 | 6.2 кОм | 623 | 62 кОм | 624 | 620 кОм | 625 | 6.2 МОм |
682 | 6.8 кОм | 683 | 68 кОм | 684 | 680 кОм | 685 | 6.8 МОм |
752 | 7.5 кОм | 753 | 75 кОм | 754 | 750 кОм | 755 | 7.5 МОм |
822 | 8.2 кОм | 823 | 82 кОм | 824 | 820 кОм | 815 | 8.2 МОм |
912 | 9.1 кОм | 913 | 91 кОм | 914 | 910 кОм | 915 | 9.1 МОм |
Получение значения с подстроечного резистора с помощью ардуино
То, что ножка резистора подключена к аналоговому пину ардуино, позволяет отловить 1024 положения потенциометра, это даст возможность довольно точно производить подстройку. Ниже приведен код с подробными комментариями. Чтобы посмотреть значения с подстроечного резистора можно выводить информацию на дисплей или индикатор, но в примере все проще – результат можно посмотреть в мониторе порта.
// пин для получения данных int pin_rezistor = A0; // переменная для хранения значения int value = 0; void setup() { // порт работает на чтение pinMode(pin_rezistor, INPUT); // соединение с компьютером для дебага Serial.begin(9600); } void loop() { // получаем значение с пина value = analogRead(pin_rezistor); // вывод данных Serial.println(value); // ждем delay(500); }
Номинальная мощность резисторов
Поскольку резисторы рассеивают тепловую энергию по мере того, как электрические токи через них преодолевают «трение» их сопротивления, то резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждения. Естественно, эта номинальная мощность указывается в физических единицах измерения, «ватт». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше. Номинальная мощность любого резистора примерно пропорциональна его физическому размеру
Обратите внимание на первую фотографию резисторов, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная мощность. Также обратите внимание на то, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое не делает ничего, кроме сопротивления электрическому току, резисторы – чрезвычайно полезные устройства в схемах
Поскольку они просты и так часто используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и источноков питания.
Виды резисторов по характеру сопротивления
Основная характеристика резисторов — собственно сопротивление, которое измеряется в «омах». Обозначается единица измерения как «Ом» — по фамилии немецкого физика Георга Ома. Вторая характеристика — рассеиваемая мощность, измеряется в Ваттах (Вт). Это та мощность, которую элемент может преобразовать в тепло без повреждения работоспособности. Рассеиваемая мощность иногда отражается на схеме в виде черточек на «теле» элемента (см. на рисунке ниже справа), но точно указывается в спецификации. В принципе, рассеиваемую мощность можно примерно определить по размерам элемента. Чем больше корпус, тем больше рассеиваемая мощность.
Обозначение рассеиваемой мощности постоянных резисторов на схеме
Существуют два типа резисторов по характеру сопротивления: постоянные и переменные. Постоянные не меняют свое сопротивление никогда (в идеале). Переменные изменяют, но принудительно. Для этого надо передвинуть бегунок, покрутить ручку или специальный регулятор. Переменные резисторы могут быть регулируемые и подстроечные. У обоих видов можно изменять сопротивление в некотором диапазоне. Только у регулируемых диапазон обычно шире. Именно они стоят на регуляторах громкости, частоты и т.д.
Переменный резистор часто можно увидеть в радиоприемниках
Есть также подстроечные резисторы, предназначенные для точной настройки заданных параметров радио- и электронных устройств в процессе их выпуска из производства при настройке после монтажа или в процессе ремонта. Как правило, они имеют не слишком широкий диапазон. На подстроечных моделях есть небольшой регулятор под отвертку (как правило).
Номинальная мощность резисторов
Поскольку резисторы рассеивают тепловую энергию по мере того, как электрические токи через них преодолевают «трение» их сопротивления, то резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждения. Естественно, эта номинальная мощность указывается в физических единицах измерения, «ватт». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше. Номинальная мощность любого резистора примерно пропорциональна его физическому размеру
Обратите внимание на первую фотографию резисторов, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная мощность. Также обратите внимание на то, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое не делает ничего, кроме сопротивления электрическому току, резисторы – чрезвычайно полезные устройства в схемах
Поскольку они просты и так часто используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и источноков питания.
Материалы, из которых изготавливаются резисторы
В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.
Проволочные резисторы
Рисунок 9 – Проволочные резисторы Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры. Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.
Металлопленочные резисторы
Рисунок 10 – Металлопленочные резисторы Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла. Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку. Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.
Металлооксидные пленочные резисторы
Рисунок 11 – Металлооксидные пленочные резисторы В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.
Фольговые резисторы
Рисунок 12 – Фольговые резисторы Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).
Углеродные композиционные резисторы
Рисунок 13 – Углеродные композиционные резисторы До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала. Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление. Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.
Углеродные пленочные резисторы
Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы. В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.
Переменный резистор как потенциомер
Уместное и более корректное другое название ПТ — делитель напряжения. Если взять вышеуказанную схему, то это также 2 и больше резисторов с последовательным соединением, но такой узел из них (цепочка) подключается параллельно источнику, что позволяет регулировкой их сопротивления получать именно напряжение, требуемое для нагрузки.
Разница в сфере применения
Потенциометр обладает низкой мощностью, применяется для сравнительно слабых по энергопотреблению устройств: телевизоры, аудиотехника, маломощные диммеры, регуляторы нагрева теплого пола, бойлеров, как преобразователи, для регулировки частоты оборотов слабых моторов, для вентиляторов, например, компьютерных кулеров, систем вентиляции.
Применение РС охарактеризуем выборкой из тематического сайта:
Сферы использования на первый взгляд подобные ПТ, но это не так: РС используются там, где большие токи и работа устройств зависит от них: мощные электроинструменты, электродвигатели транспортных средств и производственные, в промышленности.
Можно сказать, что переменник для ламп, работающих с большими токами и таких же нагрузок в виде электродвигателей, для электропечей, станков применяется только в режиме реостата.
Наиболее понятное объяснение различия в применении
При потенциометре ток от источника тратится выше в несколько раз, чем нужно нагрузке. При РС значение этой величины равно таковой на нагрузке. Поэтому последний применяется для настройки I и U на низкоомных нагрузках, они имеют закономерность — потребляют сравнительно более мощные токи, а потенциометры — для высокоомных, так как они обычно питаются этой величиной с небольшим значением.
Особенности по внешнему виду
Переменник может быть и тем и другим, но если он изготовляется под режим реостата, то имеет характерный для него типоразмер: с двумя выводами, с крупной резистивной частью (обмоткой), обычно это большой, толстый, тяжелый проволочный резистор и его форма намного габаритнее, чему у деталей для ПТ.
Надо различать термины, так как иногда в разных источниках возникает путаница: например, фраза «потенциометр в режиме реостата» не совсем корректная, поскольку это обозначение двух разных включений, но словосочетание «переменный резистор в режиме реостата (или потенциометра)» правильное. Хотя часто встречаются ошибочные лексические образования даже на сайтах технической тематики, но тут главное, чтобы пользователь различал, о чем речь.
Если у детали два выхода, то ее состояние — только РС, если же три, то такую деталь теоретически можно использовать как его (мы это описали выше), но в реальности она предназначена именно для режима ПТ.