Компаратор. описание и применение. часть 1

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Параметры

Parameters / Models LM311D LM311DE4 LM311DG4 LM311DR LM311DRE4 LM311DRG4 LM311P LM311PE4 LM311PSR LM311PSRE4 LM311PW LM311PWG4 LM311PWLE LM311PWR LM311PWRG4 LM311Y
Approx. Price (US$) 0.12 | 1ku 0.12 | 1ku
Input Bias Current (+/-)(Max), нА 250 250 250 250 250 250 250 250 250 250 250 250 250 250
Input Bias Current (+/-)(Max)(nA) 250 250
Iq per channel(Max), мА 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
Iq per channel(Max)(mA) 7.5 7.5
Количество каналов 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Number of Channels(#) 1 1
Рабочий диапазон температур, C от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70 от 0 до 70
Operating Temperature Range(C) -40 to 850 to 70 -40 to 850 to 70
Тип выхода Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector Open Collector
Package Group SOIC SOIC SOIC SOIC SOIC SOIC PDIP PDIP SO SO TSSOP TSSOP TSSOP TSSOP TSSOP PDIPSOSOICTSSOPWAFERSALE
Package Size: mm2:W x L, PKG 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) 8SOIC: 29 mm2: 6 x 4.9(SOIC) See datasheet (PDIP) See datasheet (PDIP) 8SO: 48 mm2: 7.8 x 6.2(SO) 8SO: 48 mm2: 7.8 x 6.2(SO) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP) 8TSSOP: 19 mm2: 6.4 x 3(TSSOP)
Package Size: mm2:W x L (PKG) See datasheet (PDIP) See datasheet (PDIP)
Propagation Delay Time, uS 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115
Rail-to-Rail No No No No No No No No No No No No No No No No
Rating Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog Catalog
Special Features Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin StrobeVos Adj Pin Strobe,Vos Adj Pin Strobe,Vos Adj Pin StrobeVos Adj Pin
VICR(Max), В 28 28 28 28 28 28 28 28 28 28 28 28 28 28
VICR(Max)(V) 28 28
VICR(Min), В 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
VICR(Min)(V) 0.5 0.5
Vos (Offset Voltage @ 25C)(Max), мВ 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
Vos (Offset Voltage @ 25C)(Max)(mV) 7.5 7.5
Vs(Max), В 30 30 30 30 30 30 30 30 30 30 30 30 30 30
Vs(Max)(V) 30 30
Vs(Min), В 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Vs(Min)(V) 3.5 3.5
tRESP Low — to — High(us) 0.115 0.115

Схема LM358

Конструкция прибора включает в себя несколько корпусов, на которых закреплены операционные усилители. А это означает, что имеется не два “входа” и “выхода”, а намного больше.

Он содержит уникальный выходной каскад, который был революционным после выпуска. В отличие от иных электротехнических оборудований того времени, он поддерживает принимаемую оптическую нагрузку, близкую к заземлению, что полезно для схем с однополярным питанием. Регулятор тока ~ 50 мкА может подтягивать сигнал к «подошве», потому что различные транзисторные эмиттеры не имеют сильного встречного потока заряженных атомов, в отличие от других генераторов мощности этого периода и нынешней эпохи.

Кроме того, устройство помещает в себя дополнительные линии источника. Эти соединения обеспечивают постоянный «желательный» (I) смещения, который не зависит от дифференциального начального напряжения. Такой постоянный ток обеспечивает высокое эффективное входное сопротивление. Без необходимых источников «приемный» ток смещения будет варьироваться от нуля до двойного значения нормальной величины движения (при изменении дифференциального входного напряжения).

Это обычное явление для других операционных усилителей с биполярным транзистором. Лишь TS321 является исключением из этого правила, поскольку не имеет вспомогательных ключей.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Фото — УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Фото — Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

Фото — схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Фото — простой компаратор

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото — аналоговый компаратор

Видео: компараторы

↑ Список источников

1. Мосягин В.В. Секреты радиолюбительского мастерства. – М.: СОЛОН-Пресс. – 2005, 216 с. (с. 47 – 64). 2. Шустов М.А. Практическая схемотехника. 450 полезных схем радиолюбителям. Книга 1. – М.: Альтекс-А, 2001. – 352 с. 3. Шустов М.А. Практическая схемотехника. Контроль и защита источников питания. Книга 4. – М.: Альтекс-А, 2002. – 176 с. 4. Низковольтная «мигалка». (За рубежом) // Радио, 1998, №6, с. 64. 5. Датагорская статья «Главный инструмент — паяльник!» 6. Датагорская статья «Пайка SMD деталей в домашних условиях» 7. Даташит на LM3909 8. Шумейкер Ч. Любительские схемы контроля и сигнализации на ИС. – М:.Мир, 1989 (схема 46. Простой индикатор разряда батареи, с. 104; схема 47. Маркер фалиня (мигающий), с. 105). 9. Генератор на LM3909 // Радиосхема, 2008, №2. 10. Nahrada obvodu LM3909 // Prakticka electronic A Radio, 2009, №6, с. 22. 11. Одинец А.Л. Необычное применение LM3909 // Радиоаматор, 2009, №12, с. 16. 12. Борисевич К. ИМС LM3909 в радиолюбительских конструкциях // Радиомир, 2010, №1, с. 19. 13. Discrete Version Of The LM3909 Oscillator IC 14. Белоусов О.В. Эквивалент ИМС LM3909 на деталях для поверхностного монтажа // Радиоаматор, 2011, №11, с. 34, 35.

LM317 и LM337. Особенности применения. | РадиоГазета

В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает,  при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337  – регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные!

Даташит производителя: datasheet LM317 (pdf-формат 1041 кб),  datasheet lm337 (pdf-формат 43кб).

Цоколёвка LM317 и LM337:

Типовая схема включения LM317

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ.  Установка емкости больше указанного значения ощутимого эффекта не даёт.

Схема примет вид:

Увеличение по клику

2. При выходном напряжении больше 25В в целях защиты микросхемы, для быстрого и безопасного разряда конденсаторов необходимо подключить защитные диоды:

увеличение по клику

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5

Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне  нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).

Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.

Удачного творчества!

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Одной из задач электронных управляющих систем является сравнение текущего значения контролируемой величины с некоторыми её допустимыми значениями (порогами). Обычно это верхние и нижние значения (уставки), в пределах которых может изменяться контролируемая величина. Значения уставок определяются конкретным технологическим процессом. Интервал между уставками обычно называется «зона допуска» или «трубка допуска». При выходе процесса из зоны допуска средства управления выдают соответствующие команды на исполнительные механизмы, возвращая процесс в зону допуска.

Сравнение текущих значений измеряемых величин с порогами часто выполняется с помощью электронных устройств, называемых компараторами. Компаратор – это функциональный узел, имеющий два значения выходного сигнала – 0 и 1. При необходимости обработки множества сигналов от однотипных датчиков одним компаратором, используют мультиплексоры. В этом случае обработка сигналов от различных каналов на компараторе идёт последовательно во времени.

Различают компараторы аналоговых и дискретных сигналов. Ниже рассмотрены основные характеристики и принципы построения простейших компараторов обоих типов.

Программирование и компаратор

Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.

Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
Установите pom.xml и создайте новый файл

Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки

Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.

Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.

50 шт. LM393 DIP Cдвоенный компаратор. US $2.00

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

↑ Соберём микросхему LM3909 на дискрете

Сдерживающим фактором популярности у любителей служат недостаточная распространённость микросхемы LM3909 и её неадекватная цена. Несложно изготовить прототип микросхемы, что предлагает ряд авторов . При этом они приводят весьма близкие схемы, практически копирующие схему из даташита фирмы–изготовителя.

На рис. 9 показана схема прототипа микросхемы LM3909 на электронных компонентах для поверхностного монтажа .

Следует помнить, что диапазон питающих напряжений схемы 1,5…6 В, а стабилитрон VD1 (рис.

При увеличении сопротивления резистора R1 длительность вспышек светодиода HL1 увеличивается, но уменьшается их яркость. Частоту вспышек определяют ёмкость конденсатора С1 и сумма сопротивлений резисторов R2 и R3.


Рис. 9. Прототип ИМС LM3909 на SMD компонентах

Разница в цене самой микросхемы и цене комплектующих элементов, используемых для изготовления её эквивалента, составила более 8 раз!

Корпус / Упаковка / Маркировка

LM311D LM311DE4 LM311DG4 LM311DR LM311DRE4 LM311DRG4 LM311P LM311PE4 LM311PSR LM311PSRE4 LM311PW LM311PWG4 LM311PWLE LM311PWR LM311PWRG4 LM311Y
Pin 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Package Type D D D D D D P P PS PS PW PW PW PW PW Y
Industry STD Term SOIC SOIC SOIC SOIC SOIC SOIC PDIP PDIP SOP SOP TSSOP TSSOP TSSOP TSSOP TSSOP
JEDEC Code R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDIP-T R-PDIP-T R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G
Package QTY 75 75 75 2500 2500 2500 50 50 2000 2000 150 150 2000 2000
Carrier TUBE TUBE TUBE LARGE T&R LARGE T&R LARGE T&R TUBE TUBE LARGE T&R LARGE T&R TUBE TUBE LARGE T&R LARGE T&R
Маркировка LM311 LM311 LM311 LM311 LM311 LM311 LM311P LM311P L311 L311 L311 L311 L311 L311
Width (мм) 3.91 3.91 3.91 3.91 3.91 3.91 6.35 6.35 5.3 5.3 4.4 4.4 4.4 4.4 4.4
Length (мм) 4.9 4.9 4.9 4.9 4.9 4.9 9.81 9.81 6.2 6.2 3 3 3 3 3
Thickness (мм) 1.58 1.58 1.58 1.58 1.58 1.58 3.9 3.9 1.95 1.95 1 1 1 1 1
Pitch (мм) 1.27 1.27 1.27 1.27 1.27 1.27 2.54 2.54 1.27 1.27 .65 .65 .65 .65 .65
Max Height (мм) 1.75 1.75 1.75 1.75 1.75 1.75 5.08 5.08 2 2 1.2 1.2 1.2 1.2 1.2
Mechanical Data

Схема включения

Ниже приведена простая схема одного из способов включения lm393. Она даёт необходимое представление и понимание того, как работает данное устройство. Собрать её можно самостоятельно используя небольшое количество дополнительных электронных компонентов:

  • фоторезистор;
  • резисторы на 33 кОм и 330 Ом;
  • потенциометр от 1 до 20 кОм;
  • светодиод;
  • батарейка типа АА – 3 шт.


Компаратор lm393 в представленной схеме полезен тем, что сверяет уровень поступающих сигналов с эталонным (пороговым) значением для принятия решения о подаче питания на светодиод. Используя дополнительный фоторезистор, можно сделать миниатюрный электронный ночник. В темноте он будет светится, а с появлением света гаснуть.

Потенциометр в схеме используется в качестве калибратора. С его помощью настраивается сопротивление включения (когда ночью) и выключения (при свете) светодиода. После такой настройки компаратор сможет сравнивать опорное питание с напряжением от делителя, которое он получает по линии подключённой между резистором 33 кОм и фоторезистором.

Когда на фоторезистор попадёт свет, его сопротивление падает ниже 30 кОм. Таким образом, большая часть напруги попадает на обычный резистор 33 кОм. В результате на входе микросхемы,  через резистивный делитель, напряжение будет меньше опорного. На выходе выводится высокий уровень и светодиод гаснет.

В темноте фоторезистор будет иметь очень большое сопротивление, поэтому большая часть напруги передастся уже ему. Напряжение получаемое от резистивного делателя будет выше опорного. В результате на выходе микросхемы выводится низкий уровень и светодиод светится.

Применение LM317

Схемы, приведенные выше – лишь малая часть, основа, по сравнению с тем, что возможно сделать на этом стабилизаторе. Он может использоваться почти во всех схемах, которые требуют постоянного питания до 40 В. Вот некоторые сферы применения, описанные в официальном техническом документе данной микросхемы:

  • Персональные компьютеры
  • Цифровые камеры
  • ЭКГ
  • Интернет свитчи
  • Биометрические датчики
  • Драйверы электромоторов
  • Портативные зарядки
  • PoE
  • RFID считыватели
  • Бытовая техника
  • Рентгеновские аппараты

Как можно видеть, даже сам производитель рассчитывает на максимально широкое использования данного элемента, что уж говорить о самодельщиках, готовых представить самые необычные схемы с использованием LM317.

Datasheets

LM111-N, LM211-N, LM311-Nwww.ti.com SNOSBJ1E – MAY 1999 – REVISED MARCH 2013 LM111-N/LM211-N/LM311-N Voltage ComparatorCheck for Samples: LM111-N, LM211-N, LM311-N FEATURES 1 2 Operates From Single 5V SupplyInput Current: 150 nA Max. Over TemperatureOffset Current: 20 nA Max. Over TemperatureDifferential Input Voltage Range: В±30VPower Consumption: 135 mW at В±15V DESCRIPTIONThe LM111-N, LM211-N and LM311-N are voltagecomparators that have input currents nearly athousand times lower than devices like the LM106 orLM710. They are also designed to operate over awider range of supply voltages: from standard В±15Vop amp supplies down to the single 5V supply usedfor IC logic. Their output is compatible with RTL, DTLand TTL as well as MOS circuits. Further, they candrive lamps or relays, switching voltages up to 50V atcurrents as high as 50 mA. Both the inputs and the outputs of the LM111-N,LM211-N or the LM311-N can be isolated fromsystem ground, and the output can drive loadsreferred to ground, the positive supply or the negativesupply. Offset balancing and strobe capability areprovided and outputs can be wire OR’ed. Althoughslower than the LM106 and LM710 (200 ns response …

Аналоги микросхемы

Являясь средним по параметрам, операционный усилитель LM358 имеет аналоги по техническим характеристикам. Компонент без буквы может быть заменен на OP295, OPA2237, TA75358P, UPC358C, NE532, OP04, OP221, OP290. А для замены LM358D потребуется использовать KIA358F, NE532D, TA75358CF, UPC358G. Интегральная микросхема выпускается в серии с другими компонентами, которые имеют отличия лишь в температурном диапазоне, предназначенные для работы в суровых условиях.

Встречаются операционные усилители с максимальной температурой до 125 градусов и с минимальной до 55. Из-за чего сильно разнится и стоимость устройства в различных магазинах.

К серии микросхем относятся LM138, LM258, LM458

Подбирая альтернативные аналоговые элементы для применения в устройствах важно учитывать рабочий температурный диапазон. Например, если LM358 с пределом от 0 до 70 градусов недостаточно, то можно использовать более приспособленные к суровым условиям LM2409

Также довольно часто для изготовления различных устройств требуется не 2 ячейки, а 1, тем более, если место в корпусе готового изделия ограничено. Одними из самых подходящих для использования при конструировании небольших устройств являются ОУ LM321, LMV321, у которых также есть аналоги AD8541, OP191, OPA337.

Список ранее опубликованных глав

Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ

Тим Грин, Пит Семиг, Колин Веллс (Texas Instruments)

Перед вами – глава из «Поваренной книги разработчика аналоговой электроники», созданной инженерами компании Texas Instruments (TI). Поваренная книга – сборник рецептов, а данный цикл статей – сборник стандартных схем с операционными усилителями. Каждой схеме посвящена отдельная статья, содержащая пример типового расчета с указанием формул и последовательности действий. Результаты расчетов дополнительно проверяются в программе SPICE-моделирования. Расчеты выполнены для конкретных усилителей из производственной линейки TI. Разработчик может использовать и другие изделия, широкий выбор которых представлен на страницах каталога компании КОМПЭЛ. От читателя требуется понимание базовых принципов работы операционных усилителей. Если же знаний недостаточно, следует вначале ознакомиться с учебными курсами TI Precision Labs (TIPL). Авторы обещают обновлять и дополнять статьи цикла.

Мы публикуем главы Поваренной книги на нашем сайте регулярно – дважды в месяц.

Мощные аналоги LM317T — LM350 и LM338

Правда, это честно показано на диаграмме Ripple Rejection. Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным.


Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.


Рекомендации по применению защитных диодов для LM носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике. Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки,. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже.


Микросхема LM в корпусе ТО способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. А схемы и данные в его datasheet все те же … Итак, недостатки LM, как микросхемы и ошибки в рекомендациях по ее использованию. Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Конфигурация выводов Типовая схема включения LM Схема регулируемого блока питания на LM будет выглядеть так: Мощность трансформатора Вт, напряжение вторичной обмотки вольт. Следовательно, на вход Vin надо подать больше чем 5 вольт.

Технические характеристики:


Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. А для LM она фактически означает степень собственной ущербности и показывает, как же хорошо LM борется с пульсациями, которые сама же берет с выхода и опять загоняет внутрь самой себя. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше.

Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Стабилизация и защита схемы Емкость С2 и диод D1 не обязательны. Аналоги lm Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Можно упростить себе жизнь, если использовать микросхему LM — аналог микросхемы LM, но на отрицательное напряжение. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора. Блок питания на LM338T part 1