Кпд солнечных батарей в космосе

Содержание

Вред экологии

Несмотря на экологическую безвредность применения солнечных батарей, их производство и утилизация может навредить окружающей среде и здоровью людей. Солнечные панели содержат металлы, такие как свинец, медь, галлий и кадмий, синтетические материалы. Их основа изготавливается из алюминия. Все это требует грамотной утилизации. Также, размещенные на больших площадях, они могут влиять на климат, нарушая естественный температурный режим.

Само производство фотоэлементов и панелей является химически грязным. Стоки и отработанные газы пагубно влияют на экологию. Земля, вода и воздух могут содержать вредные вещества, что является угрозой для всего живого вокруг этих предприятий.

Так стоит ли причислять солнечные панели к предметам причиняющим вред экологии?

Количество солнечных электростанций растет. Если технологии не будут развиваться в сторону наименьшего причинения вреда планете и людям, человечество ждет еще одна рукотворная экологическая проблема.

Положительные и отрицательные стороны использования солнечных батарей

Преимущества фотоэлектрического источника питания:

  • электроснабжение без дополнительных эксплуатационных затрат;
  • самостоятельное выполнение монтажа;
  • длительный срок службы рабочих пластин.

Недостатки:

  • зависимость от географического расположения;
  • снижение эффективности (мощности) в пасмурную погоду;
  • необходимость регулярной очистки загрязненной поверхности.

Для отопления в северных регионах России такое преобразование не подходит. Кроме высокой цены, следует учитывать низкую инсоляцию. Совершенствование процессов производства уменьшает издержки. Новые технологии увеличивают КПД солнечных панелей.

На что обращать внимание при выборе солнечных панелей

В связи с тем, что использование энергии Солнца в бытовых целях еще не стало привычным делом, и выбор солнечных панелей вызывает определенные сложности, предлагаем перечень наиболее важных параметров

Итак, при покупке такого модуля стоит обратить внимание на следующие пункты:. производитель

производитель.

Важно обратить внимание, как долго данный производитель представлен на рынке данного товара, и какой у него объем производства. Чем дольше производитель работает в этой отрасли, тем больше ему можно доверять

область использования.

Для каких целей будет использоваться полученная энергия: для зарядки мелкой техники, для электроснабжения крупных электроприборов, для освещения или для полноценного электроснабжения дома. Именно от того, для каких целей покупается солнечный модуль, зависит выбор выходного напряжение и мощности панелей.

напряжение.

Для мелких электроприборов достаточно 9 В, для зарядки смартфонов и ноутбуков – 12-19 В, а для обеспечения всей энергосистемы дома – 24 В и более.

мощность.

Данный параметр рассчитывается на основе среднесуточного энергопотребления (сумма потребляемой энергии всей техникой за день). Мощность солнечных панелей должна с некоторым запасом перекрывать потребление.

качество фотоэлектрических элементов.

Существует 4 категории качества фотоэлементов, из которых состоит солнечная панель: Grad A, Grad B, Grad C, Grad D. Естественно лучше всего первая категория – Grad A. Модули этой категории качества не имеют сколов и микротрещин, однородны по цвету и структуре, имеют набольший КПД и практически не подвержены деградации.

срок службы.

Срок службы солнечных панелей варьируется от 10 до 20 лет. Конечно, длительность полноценной работы такой энергосистемы зависит от качества батарей и правильности их установки.

дополнительные технические параметры.

Наиболее важными являются КПД, толеранс (допустимое отклонения по мощности), температурный коэффициент (влияние температуры на производительность батареи).

Разобравшись в основных технических характеристиках, предлагаем вам рейтинг лучших солнечных панелей в 2021 году.

Плюсы

  1. За счет того, что в панелях нет подвижных узлов и элементов, повышается долговечность. Производители гарантируют срок службы в 25 лет.
  2. Если соблюдать все регламентные работы и правила эксплуатации работа таких систем увеличивается до 50 лет. Обслуживание довольно несложное — своевременно очищать фотоэлементы от пыли, снега и других естественных загрязнений.
  3. Именно долговечность системы — определяющий фактор для покупки и монтажа панелей. После того как все затраты себя окупят, вырабатываемое электричество получится бесплатным.

Самое главное препятствие для широкого применения таких систем — их высокая стоимость. При низком КПД бытовых солнечных панелей, есть серьезные сомнения в экономической необходимости именно в таком способе добычи электроэнергии.

Но опять же, надо разумно оценивать возможности данных систем и, исходя из этого, рассчитывать ожидаемую отдачу. Полностью заменить традиционную электроэнергию не выйдет, но получить экономию, используя и солнечные системы, вполне реально.

Кроме того, сложно не заметить такие выгоды как:

  • Получение электричества в самых удаленных от цивилизации районах;
  • Автономность;
  • Бесшумность.

Виды солнечных батарей

В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.

I. Классификация по типу их устройства:

  1. 1. Гибкие;
  2. 2. Жёсткие.

II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:

  1. Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью. Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании. Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;
  2. Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;
  3. Солнечные батареи, фотоэлемент которых выполнен из селена;
  4. Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;
  5. Из органических соединений;
  6. Из арсенида галлия
  7. Из нескольких материалов одновременно.

Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.

Другие материалы не получили широкого распространения в связи с большой стоимостью.

Устройство и работа модулей гибких солнечных батарей

Гибкая солнечная панель устроена следующим образом: тонкая подложка покрыта кремниевым полупроводником. Толщина панели с напылением составляет не более 1 мкм. Полупроводник нагревается солнцем, в результате чего электроны перемещаются в заданном направлении. К элементам монтируют выводы и формируют батарею. Для работы такой мобильной электростанции используют солнечную энергию.

Крупногабаритные, с маленьким КПД, солнечные батареи ушли в прошлое. Современным моделям не требуется максимальное количество солнечного света, а сами конструкции стали легкими, гибкими, мобильными, их можно свернуть в трубку и взять с собой в поход.

Для повышения КПД современные технологии позволяют выпускать многослойные полупроводниковые конструкции. Каскадное строение панели дает возможность преобразовывать отраженный свет несколько раз, что доводит их работоспособность почти до кристаллических вариантов.

Несмотря на то что устройство выглядит довольно просто, для подачи тока в сеть необходимы дополнительные составляющие:

  • Аккумулятор, накапливающей энергию. Он нужен при перепадах напряжения.
  • Инвертор, переводящий постоянный ток в переменный.
  • Система для корректировки заряда аккумулятора.

Как правильно выбрать солнечную батарею для дома

При выборе оборудования для солнечной электростанции следует обращать внимание на такие моменты:

стоимость панели во многом зависит от ее мощности;
часто от размера батареи зависит ее мощность – более мощное оборудование будет занимать большую площадь, нежели прибор с небольшой мощностью;
важно обращать внимание на такие характеристики, как эффективность модуля, температурный коэффициент, а также срок гарантии;
если панели планируется размещать в регионе, где нет много солнечного света, рекомендуется выбирать оборудование, которое эффективно использует рассеянный свет и выдерживает негативное влияние внешних факторов.

Стоимость солнечных панелей напрямую связана с их классом и мощностью. Притом, высококлассные портативные модели также присутствуют в рейтинге лучших солнечных батарей. Выбор оборудования зависит от необходимой мощности и сферы применения.

Видео — Солнечные батареи для дома

Чтобы вам было легче определиться с выбором, мы поместили все модели солнечных батарей в одну сравнительную таблицу:

Название модели Вес (кг) Мощность (Вт) Напряжение (В) КПД (%)
Delta SM 30-12 P 2,9 30 12 15,6
Delta BST 50-12 P 5,2 12 60 16,2
Delta SM 200-24 M 15 200 24 18,3
Feron PS 0303 5 17 150 17
Delta BST 50-12 M 5,2 12 60 17
E-Power 25Вт 0,6 25 18 20,5
SilaSolar 30Вт 2,8 30 18 17,1
E-Power 50Вт 0,7 50 17,6 21,5
TopRaySolar 65П 5,3 65 12 19
ТСМ-95 А 7,9 95 18 18,7
ФСМ-160П 12,2 160 18,8 17,5
Seraphim SRP-270-6PB 19 270 31 19,6
JA Solar JAM72D10/MB 405W Mono Half-Cell PERC Bifacial 30 405 42 19,8

Голосование за лучшую солнечную батарею для дома

Какую бы вы выбрали солнечную панель или посоветовали?

Delta SM 30-12 P

Сохраните результаты голосования, чтобы не забыть!

Чтобы увидеть результаты, вам необходимо проголосовать

Как устроена солнечная батарея

Все современные солнечные батареи работают благодаря открытию, сделанным физиком Александром Беккерелем в 1839 году — самого принципа работы полупроводников.

Если нагревать кремниевые фотоэлементы на верхней пластине, то атомы кремниевого полупроводника высвобождаются. Их стремятся захватить атомы нижней пластины. В полном соответствии с законами физики, электроны нижней пластины должны вернуться в первоначальное состояние. Этим электронам открывается один путь — по проводам. Сохранённая энергия передается аккумуляторам и возвращается вновь в верхнюю кремниевую пластину.

Двусторонние солнечные модули

Одними из первых модули с двусторонней чувствительностью разработал российский производитель в Краснодаре – завод “Солнечный Ветер”. Мы продавали двусторонние модули еще 15-20 лет назад. К сожалению, в 2012 году завод закрылся, и с тех пор в России двусторонние модули больше не выпускаются. Но последние несколько лет все больше производителей стало выпускать такие (Bifacial) модули. В основном они изготавливаются из элементов n-типа (“Солнечный ветер” был одним из первых в мире, кто освоил производство солнечных элементов n-типа). 

По конструкции такие модули могут отличаться по исполнению задней защитной части. Это может быть или прозрачная EVA пленка, или стекло (double glass). Модули с двойным стеклом имеют лучшую надежность и больший срок службы по сравнению со стандартными модулями с защитной пленкой. Модули могут быть с алюминиевой рамой и безрамными.

Как отличить по настоящему двусторонние модули от односторонних с прозрачной задней пленкой или двойным стеклом (такие тоже есть на рынке)? Настоящие двусторонние модули имеют токосъемную сетку с обеих сторон солнечного элемента.

Двусторонние солнечные модули на трекере

Традиционно двусторонние модули использовались только при установке на земле в таких условиях, когда отраженных от земли солнечный свет мог попадать на заднюю поверхность солнечной батареи. Например, при отражении от снега, от светлого песка и т.п. Даже при установке на светлых крышах достигалась добавка к выработке энергии (в среднем +10% по сравнению с односторонними модулями). 

Учитывая, что чувствительность задней стороны в таких модулях идет бонусом и ничего не стоит, применение двусторонних модулей может быть привлекательным даже при том, что задняя поверхность не освещается. Они часто используются при строительстве навесов и полупрозрачных крыш, потому что свет проникает через незаполненные солнечными элементами промежутки. 

Еще одним преимуществом двусторонних солнечных модулей является меньший температурный коэффициент из-за того, что такие модули меньше нагреваются на солнце. 

Как устанавливать двусторонние модули?

Способ установки bifacial модулей зависит от их конструкции. Рамные модули обычно легче устанавливать потому, что традиционные монтажные конструкции больше адаптированы именно к рамным модулям. Многие производители двусторонних модулей снабжают своими специальными креплениями, это облегчает установщикам их работу. Безрамные модули крепятся с помощью специальных креплений с резиновыми прокладками (они есть у нас в ассортименте), и нужно быть аккуратными при затяжке болтов, чтобы не расколоть стекло.

Количество энергии, которое генерируется тыльной стороной модуля, зависит от угла наклона солнечной батареи. Нужно обеспечивать попадание отраженного от поверхностей света на заднюю часть модуля. Несмотря на то, что в двусторонних фотоэлектрических модулях используются специальные тонкие клеммные коробки, которые практически не затеняют тыльную сторону элементов, сама монтажная конструкция может частично затенять тыльную часть солнечного модуля. В идеале нужно проектировать монтажную конструкцию с учетом используемых модулей с двусторонней чувствительностью, чтобы она минимально затеняла тыльную сторону солнечной батареи от отраженного света.

Вот некоторые производители, которые делают двусторонние модули:  LG, LONGi, Lumos Solar, Prism Solar, Silfab, Sunpreme, Trina Solar и Yingli Solar. С увеличением количества производителей двусторонние модули переходят из нишевого продукта в майнстрим. Думаю, мы увидим через несколько лет, что bifacial модули занимают существенную долю рынка солнечных модулей.

Обзор бескремниевых устройств

Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.

Солнечные панели из редких металлов

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.

Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.

Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов

Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).

Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.

КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.

Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.

Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.

При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.

Преимуществами органических солнечных панелей являются:

  • возможность экологически безопасной утилизации;
  • дешевизна производства;
  • гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Развитие отечественной космической фотоэнергетики

Об энергоснабжении космических аппаратов конструкторы задумывались еще на стадии проектирования самых первых ракет-носителей. Ведь в космосе батареи не заменить, значит, срок активной службы космического аппарата обусловлен только емкостью бортовых батарей. Первый и второй искусственные спутники земли были оснащены только бортовыми батареями, которые истощились через несколько недель работы. Начиная с третьего спутника, все последующие космические аппараты были оборудованы солнечными батареями.

Главным разработчиком и изготовителем космических солнечных электростанций было научно-производственное предприятие «Квант». Солнечные панели «Кванта» установлены практически на всех отечественных космических аппаратах. Вначале это были кремниевые солнечные батареи. Их мощность была ограничена как заданными размерами, так и весом. Но затем учеными «Кванта» были разработаны и изготовлены первые в мире солнечные батареи на основе совершенно нового полупроводника – арсенида галлия (GaAs).

Кроме того, были запущены в производство абсолютно новые гелиевые панели, которые не имели аналогов в мире. Этой новинкой стали высокоэффективные гелиевые панели на подложке, имеющей сетчатую или струнную структуру.

Гелиевые панели с сетчатой и струнной подложкой

Специально для установки на космических аппаратах с низкими орбитами были спроектированы и изготовлены кремниевые гелиевые панели с двусторонней чувствительностью. Например, для российского сегмента международной космической станции (космического аппарата «Звезда») были изготовлены панели на кремниевой основе с двусторонней чувствительностью, причем площадь одной панели составляла 72 м².

Солнечная батарея космического аппарата «Звезда»

Были также разработаны на базе аморфного кремния и запущены в производство гибкие солнечные батареи, имеющие прекрасные удельные весовые характеристики: при весе всего 400 г/м² эти батареи вырабатывали электроэнергию с показателем 220 Вт/кг.

Гибкая гелиевая батарея на базе аморфного кремния

Чтобы повысить эффективность солнечных элементов, в большом объеме проводились наземные исследования и испытания, которые выявляли отрицательные воздействия Большого Космоса на гелиевые панели. Это позволило перейти к изготовлению солнечных батарей для космических аппаратов различных типов со сроком активной работы до 15 лет.

Порядок расчета энергетических показателей

Вычисление рабочих параметров упрощают таблицей Excel. Результат рассчитывается автоматически после внесения исходных данных.

Подготовительные мероприятия

Пример заполнения:

Столбцы Значения
1 Порядковый номер
2 Наименование подключаемого прибора
3 Мощность по техническому паспорту
4-27 В ячейках часовых временных интервалов отмечают периоды включения оборудования, потребление электроэнергии
28, 29 Суммарные показатели

Составление спецификации потребителей

Применяют последовательную запись электрических параметров, начиная с цоколя здания. Обходят помещения по часовой стрелке. Вносят сведения об уличном освещении, подключенной технике. Время работы указывают в десятичном формате. Учитывают потребление электроэнергии блоком фотоэлектрических панелей.

Анализ и оптимизация полученных данных

Для применения фотоэлементов как резервного источника питания смещают самые мощные нагрузки в зону действия централизованного снабжения электрической энергией.

Самые эффективные солнечные батареи: рейтинг

Наиболее эффективные солнечные преобразователи, на сегодня, производит фирма Sharp. Трехслойные, мощные, концентрирующие солнечные панели имеют эффективность в 44,4%. Стоимость их невероятно высока, поэтому они нашли применение лишь в авиационно-космической промышленности.

Ознакомиться с рейтингом лучших и эффективных солнечных батарей можно самостоятельно, используя интернет

Наиболее доступными и эффективными являются современные солнечные батареи от компаний:

  • Panasonic Eco Solutions;
  • First Solar;
  • MiaSole;
  • JinkoSolar;
  • Trina Solar;
  • Yingli Green;
  • ReneSola;
  • Canadian Solar.

Компания Sun Power производят самые надежные солнечные преобразователи с КПД в 21,5%. Продукция этой компании пользуется абсолютной популярностью на коммерческих и производственных объектах, уступая, разве что, устройствам от Q-Cells.

Влияние на производительность материала ячеек

В зависимости от использованных в конструкции полупроводниковых материалов, номинальный КПД солнечных панелей составляет:

  1. Аморфный кремний, A-Si. Долгое время эффективность преобразования не превышала 5-7%, но с переходом на тонкопленочные технологии поднялась до 14-16%. КПД довольно стабилен, поскольку «рыхлая» по форме поверхность ячеек хорошо поглощает даже слабый или рассеянный свет.
  2. Поликристаллический кремний, Poli-Si. Номинальные показатели находятся в диапазоне 19-21%. Падение производительности при неблагоприятных световых условиях среднее, что обеспечивается разнонаправленным расположением кристаллов поглощающего слоя.
  3. Монокристаллический кремний, Mono-Si. Обеспечивает самый высокий выход энергии при идеальных условиях освещения, до 24%. При изменении положения относительно солнца и высоких температурах КПД таких солнечных батарей значительно снижается. 
  4. Теллурид кадмия, Cd-Te. Фотоэлектрические элементы этого типа быстро набирают популярность благодаря сочетанию высокой средней эффективности и низкой цены. Более стабильная производительность, чем у чистых кристаллических кремниевых модулей, достигается идеальной шириной запрещенной зоны p/n-перехода. Коэффициент полезного действия немного меньше поликристаллов, но среднегодовая отдача выше.
  5. Редкоземельный сульфид меди/индия/галлия, CIGS. Благодаря возможности многослойной компоновки ячеек, способны добиваться максимального поглощения на уровне до 40% и выше. Широко используются в аэрокосмической промышленности, но «на земле» почти не применяются из-за высокой цены.
  6. Фотовольтаика третьего поколения. В качестве полупроводников использует органику, сложные полимеры или материалы на квантовых точках. Дешевые, простые в производстве и обладают фантастическими способностями поглощения. Несмотря на сравнительно низкий КПД в диапазоне 6-15%, эти солнечные элементы уже сегодня могли бы получить широкое применение, если бы не короткий срок службы. Нынешний рекорд устойчивости не превышает 2000 часов, или менее 3 месяцев, что недостаточно для массового производства и применения.

Продолжить чтение

  • Угол наклона и направление
    73

    Как правильно установить солнечные батареи? Солнечные панели наиболее эффективно работают, когда они направлены на солнце и их поверхность перпендикулярна солнечным лучам. Как определить такое положение солнечных батарей, при котором они будут вырабатывать максимальное количество энергии за день? Какая ориентация солнечных…

  • Солнечные батареи зимой
    62

    Эффективность работы солнечных батарей и коллекторов зимой Солнечные батареи могут быть великолепной частью вашего дома. Они определённо позволяют экономить вам деньги в течение длительного срока и постоянно могут снижать ваши счета за электроэнергию. Мы все знаем, что солнечные батареи преобразуют…

  • Видео про солнечные батареи
    57

    Видеосюжеты и интервью по телевидению про солнечную и возобновляемую энергетику C 2021 года подключать солнечные батареи к электросетям могут и частные лица Уже можно подключаться вполне официально к сетям и не платить за отданную в сеть электроэнергию. Реальный опыт использования…

  • Срок службы солнечных батарей
    52

    Сколько лет работают солнечные батареи? Солнечные батареи были испытаны в полевых условиях на многих установках. Практика показала, что срок службы солнечных батарей превышает 30 лет. Фотоэлектрические станции, работающие в Европе и США около 25 лет, показали снижение мощности модулей примерно…

  • Фотоэлектрические модули
    51

    Фотоэлектрические модули (солнечные панели) Солнечные панели состоят из солнечных элементов. Так как один солнечный элемент не производит достаточного количества электроэнергии для большинства применений, солнечные элементы собираются в солнечных модулях для того, чтобы производить больше электричества. Модули производятся из псевдоквадратных монокремниевых…

  • Натурные испытания угла установки СБ
    50

    Оптимальный угол установки солнечной батареи для максимальной выработки энергии в северных широтах Очень часто владельцы солнечных батарей задаются вопросом — а под каким углом наклона их нужно устанавливать для того, чтобы получить максимальное количество энергии от солнечных панелей в нашем…

Как увеличить КПД панелей

Можно ли повысить эффективность солнечных батарей? Чтобы получить максимальный эффект от установки солнечной системы необходимо соблюдать все правила эксплуатации панелей: контролировать угол наклона, правильно разместить с возможностью проветривания, очищать поверхность фотоэлементов и исключать затемненные участки. Кроме того, отдавайте предпочтение тем батареям, которые изготовлены из высококлассного кремния. Именно они смогут обеспечить наивысший КПД.

Повысить КПД солнечной панели

Сегодня этим вопросом занимаются научно-исследовательские центры, и данное направление является приоритетным. Инженерами предпринимаются попытки производить такую солнечную систему, которая будет состоять из модулей разных материалов. Смысл такой задумки заключается в том, чтобы разные материалы и несколько слоев могли впитывать в себя все типы энергии: как инфракрасное излучение, так и ультрафиолетовое. Подобное решение сможет повысить КПД в два, а то и в три раза. Ученые предполагают, что такие современные модули смогут производить до 90% эффективности. Более высокий процент производительности позволяет не только вырабатывать больше энергии, но и сократить срок окупаемости.

Принцип работы солнечной электростанции в домашних условиях

Солнечная электростанция – это система состоящая из панелей, инвертора, аккумулятора и контроллера. Солнечная панель трансформирует лучистую энергию в электричество (как было сказано выше). Постоянный ток попадает в контроллер, который распределяет ток по потребителям (например, компьютер или освещение). Инвертор преобразовывает постоянный ток в переменный и обеспечивает работу большинства электрических бытовых приборов. В аккумуляторе накапливается энергия, которая можно расходовать в темное время суток.

Видео описание

Наглядный пример расчетов, показывающий, сколько панелей нужно для обеспечения автономного энергоснабжения, смотрите в этом видеоролике:

https://youtube.com/watch?v=ID34smUuqdA

Как солнечная энергия используется для получения тепла

 Гелиосистемы применяются для нагревания воды и отопления жилища. Они могут давать тепло (по желанию владельца) даже тогда, когда отопительный сезон закончится, и обеспечивать дом горячей водой бесплатно. Простейшее устройство представляет собой металлические панели, которые устанавливают на крыше дома. Они аккумулируют энергию и согревают воду, которая циркулирует по скрытым под ними трубам. Функционирование всех гелиосистем основано на этом принципе, несмотря на то, что конструктивно они могут отличаться друг от друга.

Солнечные коллекторы состоят из:

  • бака-аккумулятора;
  • насосной станции;
  • контроллера;
  • трубопроводы;
  • фиттингов.

По типу конструкции различают плоские и вакуумные коллекторы. У первых дно покрыто теплоизоляционным материалом, а жидкость циркулирует по стеклянным трубам. Вакуумные коллекторы отличаются большой эффективностью, потому что теплопотери в них сведены к минимуму. Этот тип коллектора обеспечивает не только отопление солнечными батареями частного дома – его удобно использовать для систем горячего водоснабжения и подогрева бассейнов.

Принцип действия солнечного коллектораИсточник 21ek.ru

Популярные производители солнечных батарей

Чаще всего на прилавках встречается продукция компаний Yingli Green Energy и Suntech Power Ко. Также популярностью пользуются панели HiminSolar (Китай). Их солнечные батареи производят электроэнергию даже в дождливую погоду.

Производство солнечных батарей налажено и у отечественного производителя. Этим занимаются такие компании:

  • ООО «Хевел» в Новочебоксарске;
  • «Телеком-СТВ» в Зеленограде;
  • «Sun Shines» (ООО «Автономные Системы Освещения») в Москве;
  • ОАО «Рязанский завод металлокерамических приборов»;
  • ЗАО «Термотрон-завод» и другие.

По стоимости всегда можно найти подходящий вариант. Например в Москве на солнечные батареи для дома стоимость будет варьироваться от 21 000 до 2 000 000 руб. Стоимость зависит от комплектации и мощности устройств.

Солнечные батареи не всегда плоские – есть ряд моделей, которые фокусируют свет в одной точкеИсточник pinterest.com

Этапы монтажа батарей

  1. Для установки панелей выбирается самое освещенное место – чаще всего это крыши и стены зданий. Чтобы устройство функционировало максимально эффективно, панели монтируются под определенным углом к горизонту. Учитывается также уровень затемненности территории: окружающие предметы, которые могут создавать тень (постройки, деревья и т. п.)
  2. Устанавливаются панели при помощи специальных крепежных систем.
  3. Затем модули соединяются с аккумулятором, контроллером и инвертором, и производится наладка всей системы.

Для монтажа системы всегда разрабатывается персональный проект, который учитывает все особенности ситуации: как будет выполняться установка солнечных батарей на крыше дома, цена и сроки. В зависимости от вида и объема работ, все проекты рассчитываются в индивидуальном порядке. Клиент принимает работу и получает на нее гарантию.

Установка солнечных батарей должна производиться профессионалами и с соблюдением мер безопасностиИсточник pinterest.ca

Как итог – перспективы развития солнечных технологий

Если на Земле максимально эффективной работе солнечных батарей мешает воздух, который в известной мере рассеивает излучение Солнца, то в космосе такой проблемы не существует. Учеными ведется разработка проектов гигантских орбитальных спутников с солнечными батареями, которые будут работать 24 часа в сутки. От них энергия будет передаваться на наземные приемные устройства. Но это дело будущего, а для уже существующих батарей усилия направлены на повышение энергоэффективности и уменьшение размеров устройств.

Влияние на КПД солнечных электростанций сторонних факторов

Эффективность панелей после сборки, связанная с их конструктивными особенностями, остается неизменной. Совсем иначе дело обстоит с постоянно меняющимися внешними факторами воздействия.

  1. Уровень освещения. Оказывает максимальное воздействие на все фотоэлектрические системы. При полном отсутствии света абсолютное большинство современной фотовольтаики не функционирует вообще. Исключение составляют экзотические варианты с дополнительным слоем люминофора длительного свечения.
  2. Направление на солнце и рассеянный свет. При больших углах наклона наибольшее падение реального КПД происходит у монокристаллических солнечных панелей. Минимальное воздействие ухудшение условий освещения оказывает на редкоземельные тонкопленочные батареи.
  3. Падение тени. Особенно неблагоприятно сказывается на кристаллических модулях, вплоть до вероятности выхода их из строя. Пленочные конструкции страдают от этого меньше.
  4. Осадки. Сами по себе дождь, снег или град практически не изменяют эффективность преобразования. Единственная опасность состоит в возможном механическом повреждении защитного слоя, что грозит потерей герметичности и возникновением эффекта PID.
  5. Температурные колебания . Наиболее опасны для модулей быстрые смены циклов замерзания/оттаивания. Низкие температуры изменения в КПД солнечных батарей не вызывают. Однако к высоким очень чувствительны Poli-Si, и особенно Mono-Si. С превышением показателя +25°C монокристаллы начинают терять эффективность примерно на 0,5% с каждым градусом. Нагрев поверхностного слоя до 60-70°C, что часто бывает летом в жарких регионах, приводит к потере 20% номинальной производительности.

Остается надеяться, что в следующих поколениях солнечных электростанций их КПД будет зависеть от внешних факторов минимально.

Описание

Конечно солнечная панель — не единственный элемент в домашней электростанции. Это тандем из нескольких приборов и компонентов, которые вместе будут работать на то чтобы энергию солнца превратить в электрическую.

Зато от такой электростанции совсем нет шума, нет вредных выбросов в атмосферу, а полученное электричество абсолютно бесплатно. При современном развитии производства солнечных панелей срок службы от 25 до 30 лет.

Но, учитывая много нюансов при организации домашней солнечной электростанции, необходимо основательно подумать о целесообразности этого, несомненно, полезного предприятия.