Ключ на полевых транзисторах: схемы, применение, типы

Виды транзисторов

Каждая из ветвей отличается на 0.
Изображение схем подключения полевых триодов Практически каждая схема способна работать при очень низких входных напряжениях. Схема включения MOSFET Традиционная, классическая схема включения «мосфет», работающего в режиме ключа открыт-закрыт , приведена на рис 3.
Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. Чтобы на резисторе Rи не выделялась переменная составляющая напряжения, его шунтируют конденсатором Си.
Каскад с общим истоком дает очень большое усиление тока и мощности. Разница потенциалов достигает величины от 0,3 до 0,6 В. Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам.

Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Стабильность при изменении температуры. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов сужаются и сопротивление канала становится высоким. Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда.

Принцип работы триода При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается. Поэтому использование такого подхода на практике сильного ограничено в усилительной технике.

Также сюда подключается и усилитель колебаний. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует.
Защита от переполюсовки на основе полевого транзистора

Полевые транзисторы с управляющим p-n переходом

Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:

В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока Ic. Между затвором и истоком приложено напряжение, запирающее p-n переход, образованный n-областью канала и p-областью затвора.

При подаче запирающего напряжения на p-n-переход Uзи на границах канала возникает равномерный слой, обедненный носителями заряда и обладающий высоким удельным сопротивлением. Это приводит к уменьшению проводящей ширины канала.

Изменяя величину этого напряжения, можно изменить сечение канала и, следовательно, изменять величину электрического сопротивления канала. Для полевого n-канального транзистора потенциал стока положителен по отношению к потенциалу истока. При заземленном затворе от стока к истоку протекает ток. Поэтому для прекращения тока на затвор нужно подать обратное напряжение в несколько вольт.

Значение напряжения Uзи, при котором ток через канал становится практически равен нулю, называется напряжением отсечки Uзап

Таким образом, полевой транзистор с затвором в виде p-n-перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.

Полевой транзистор характеризуется следующей ВАХ:

Здесь зависимости тока стока Iс от напряжения при постоянном напряжении на затворе Uзи определяют выходные, или стоковые, характеристики полевого транзистора. На начальном участке характеристик Uси + |Uзи| < Uзап ток стока Iс возрастает с увеличением Uси. При повышении напряжения сток — исток до Uси = Uзап — |Uзи| происходит перекрытие канала и дальнейший рост тока Iс прекращается (участок насыщения). Отрицательное напряжение Uзи между затвором и истоком смещает момент перекрытия канала в сторону меньших значений напряжения Uси и тока стока Iс. Участок насыщения является рабочей областью выходных характеристик полевого транзистора. Дальнейшее увеличение напряжения Uси приводит к пробою р-n-перехода между затвором и каналом и выводит транзистор из строя.

На ВАХ Iс = f(Uзи) показано напряжение Uзап. Так как Uзи ≤ 0 p-n-переход закрыт и ток затвора очень мал, порядка 10-8…10-9 А, поэтому к основным преимуществам полевого транзистора, по сравнению с биполярным, относится высокое входное сопротивление, порядка 1010…1013 Ом. Кроме того, они отличаются малыми шумами и технологичностью изготовления.

Практическое применение имеют две основные схемы включения. Схема с общим истоком (рис. а) и схема с общим стоком (рис. б) , которые показаны на рисунке:

Принципы работы полевых транзисторов в электронных схемах: упрощенная информация

Все сложные процессы электроники удобно представлять на примере обычного водопроводного крана с рукояткой, которая позволяет перекрывать воду или регулировать ее напор от очень тонкой струйки (течь) до максимально сильного проходящего потока.

Показал это примитивной картинкой, на которой:

  • входной патрубок с напором назван стоком;
  • место выхода воды (истечения) обозначен истоком;
  • рукоятка управления или вентиль со штоком — затвор.

Аналогичным образом работает рассматриваемая нами электрическая схема полевого транзистора. Только у нее между стоком и истоком приложено основное постоянное напряжение. Эту область называют каналом. Он выполнен из полупроводника определенной структуры:

  1. n-типа (преобладают электроны — носители отрицательных зарядов);
  2. p-типа — с излишком положительных дырок.

На чертежах эти выводы показываются одним из следующих образов.

На обозначении затвора нам надо обращать внимание на направление стрелки. У полупроводников n- канального типа она направлена на затвор, а с p- проводимостью — в противоположную сторону

Любой field-effect transistors является полупроводником, причем управляемым. Это значит, что он пропускает через себя нагрузку исключительно в одну сторону, а противоположное движение электрических зарядов всегда заблокировано.

Движение тока через полупроводниковые переходы всегда направлено от стока к истоку, как и воды в кране

Это важно запомнить.. Функции закрытия или открытия этого крана (затвора), а также роль регулирования силы потока электрических зарядов возложены на затвор

Здесь действует известный всем закон Ома:

Функции закрытия или открытия этого крана (затвора), а также роль регулирования силы потока электрических зарядов возложены на затвор. Здесь действует известный всем закон Ома:

Сопротивление среды канала управляет нагрузкой, а на него действует приложенный извне потенциал.

Говоря другими словами: энергия электрического поля, приложенная к затвору, меняет сопротивление внутренних полупроводниковых переходов и влияет на величину тока в выходной силовой цепи.

Слово «поле» здесь знаковое. Оно определило целый ряд транзисторных изделий, работающих по этому принципу управления.

Потенциал электрического поля регулирует величину сопротивления через силовой полупроводниковый слой (канал), закрывая/открывая транзистор или изменяя ток через него.

Аналогичным образом управляются биполярные транзисторы (БТ), про которые у меня на блоге опубликована предыдущая статья.

Только у них силовая цепь образована меду коллектором и эмиттером, а схема управления работает от тока, образованного приложением напряжения между базой и эмиттером. У БТ своя система обозначения выводов, но те же два внутренних контура (силовая цепь и цепочка ее регулирования).

Заостряю внимание: при одном и том же напряжении между входом и выходом полевого транзистора (сток-исток) потенциал на затворе изменяет электрическое сопротивление встроенных полупроводниковых переходов.

Причем происходит это по одному из предусмотренных заранее сценариев. О них я последовательно рассказываю дальше.

Принцип работы транзистора

Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.

В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер — коллектор» может меняться в больших пределах.

Электромагнитное реле

Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.

Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.

Расчёт транзисторного ключа

Рейтинг:  5 / 5

Подробности
Категория: Практические советы
Опубликовано: 27.11.2019 13:45
Просмотров: 2425

Для транзисторного ключа не нужно рассчитывать точное значение коэффициента усиления. При слишком большом коэффициенте усиления транзистор переходит в режим ограничения тока и выходной ток будет определяться сопротивлением нагрузки. Поэтому достаточно определить только минимальный коэффициент усиления по току. Рассчитаем этот коэффициент. Пусть для индикаторной лампы требуется ток 120 мА, а цифровая микросхема может выдать ток единицы около 4 мА (этот ток определяется по справочнику или datasheet на выбранную микросхему). Тогда минимальный коэффициент усиления h21э можно определить по формуле:

h21э=Iк/Iб Iк — ток колектора Iб — ток базы В нашем случае ток коллектора равен току, протекающему через лампу, а ток базы — это максимальный допустимый выходной ток цифровой микросхемы (Iвых1). Делим 120 мА на 4 мА. Получаем минимальный коэффициент усиления по току, равный 30. То есть в данном случае подойдёт практически любой маломощный транзистор, например КТ3107

Теперь следует обратить внимание на то, что транзистор управляется током, а цифровая микросхема является генератором напряжения. В простейшем случае для преобразования напряжения в ток можно использовать резистор

Эквивалентная схема подключения базовой цепи транзистора к цифровой ТТЛ микросхеме приведена на рисунке 1. Рисунок 1 – Эквивалентная схема подключения транзисторного ключа к цифровой ТТЛ микросхеме В приведенной схеме ток базы транзистора задаёт резистор R1. Рассчитаем его сопротивление. Для этого необходимо определить падение напряжения на этом резисторе. Минимальное напряжение высокого уровня на выходе ТТЛ микросхемы при максимальном допустимом токе единицы равно 2,4 В. Падение напряжения на базовом переходе транзистора можно считать постоянным и для кремниевых транзисторов равным 0,7 В. Тогда падение напряжения на сопротивлении R1 можно определить по формуле: UR1=U1-Uб=2,4В-0,7В=1,7В . Так как к цифровому выходу подключен только транзисторный ключ, то зададимся максимально возможным током цифровой микросхемы 4 мА. Тогда по закону Ома можно определить сопротивление резистора R1 как отношение падения напряжения на этом резисторе к току, протекающему через него: R1 = 1,7В/4мА = 425 Ом . При выборе резистора из 10% шкалы можно взять резистор 510 Ом (больше чем рассчитали, чтобы не превысить допустимый ток цифровой микросхемы). При работе транзисторного ключа при комнатной температуре расчет на этом заканчивается. Если же предполагается работа транзисторного ключа при повышенных температурах, то транзистор может самопроизвольно открываться обратным током коллектора. Эквивалентная схема цепи протекания этого тока приведена на рисунке 2. Рисунок 2 – Эквивалентная схема цепи протекания обратного коллекторного тока В схеме, приведённой на рисунке 9.7, видно, что на резисторе R1 обратный ток коллектора транзистора VT1 может создать падение напряжения 0,7 В и, тем самым, открыть транзистор. Для того чтобы уменьшить падение напряжения можно параллельно этому резистору подключить еще один резистор (как показано на рисунке 3) и, тем самым, уменьшить открывающее напряжение на базе транзистора. Рисунок 3 – Эквивалентная схема шунтирования цепи протекания обратного коллекторного тока Iко транзисторного ключа резистором. В схеме, приведённой на рисунке 3, можно задаться током, протекающим через резистор R2 в режиме выдачи цифровой микросхемой единичного уровня. Пусть этот ток будет в три раза меньше базового тока транзистора. Тогда ток через резистор R2 будет равен: IR2=4 мА/3 =1,3 мА . Определим сопротивление резистора R2. Для этого воспользуемся законом Ома. Учитывая, что падение напряжения на базовом переходе транзистора является константой и равно 0,7 В. R2 = Uб/IR2 = 0,7В/1,3мА = 510 Ом В режиме выдачи цифровой микросхемой логического нуля сопротивления R1 и R2 соединяются параллельно, и в рассчитанном случае падение напряжения уменьшается вдвое. Обратите внимание, что схема на входе транзистора очень похожа на делитель напряжения, однако не является им. Если бы это был делитель напряжения, то напряжение на базе транзистора уменьшалось бы в два раза, однако на самом деле напряжение уменьшается значительно больше!

Оставлять комментарии могут только зарегистрированные пользователи

Как паять полевые транзисторы правильно и безопасно: 5 советов

Рекомендую новичкам на этот вопрос обратить самое пристальное внимание. Тогда разочарования от проделанной работы у вас не возникнет

Где спрятана засада или чем опасна статика для электроники

В повседневной жизни статическое электричество мы ощущаем редко, например, при расчесывании волос пластиковой расческой, выходе из автомобиля после поездки или в некоторых других случаях.

Обычно статика доставляет нашему организму небольшие неприятности, которые просто раздражают. Но с полупроводниками дела обстоят иначе.

У МОП транзисторов очень тонкий слой изоляции между затвором и материалом канала. Он образует емкостную связь затвор-исток, затвор-сток. Причем сам диэлектрик создает этот эффект, работая как емкость.

Мы знаем, что любой конденсатор выпускается для работы под определенным напряжением. Если его превысить, то происходит пробой изоляции. Для повреждения оксидной пленки полевика обычно достаточно десятка вольт, а иногда и меньше.

Теперь показываю фотографиями какие опасности мы можем создать своими руками для транзисторов, если не будем соблюдать правила их пайки.

Я взял свой любимый трансформаторный паяльник Момент, включил его шнур питания в розетку, но кнопку включения не нажимал. Один конец провода мультиметра через крокодил посадил на жало, а второй — просто прислонил к пальцу. Установил режим вольтметра переменного тока.

Прибор показывает 28 вольт. Вот такие наводки создаются даже при обесточенном трансформаторе.

Продолжаю эксперимент. Черный щуп оставил на прежнем месте, а красный прислонил к диэлектрической поверхности табуретки, где размещены все приборы.

Почти 6,4 вольта. Когда отделил красный щуп воздушным пространством — показание стало вообще 8 вольт.

А ведь это совершенно случайные замеры, результаты которых зависят от множества факторов, что значит: напряжение может быть значительно больше или меньше.

Мы можем даже не чувствовать эту статику, но ее случайный разряд способен выжечь тонкий полупроводниковый переход кристалла.

Чтобы этого не допустить важно соблюдать обязательные рекомендации

Совет №1: шунтирование выводов

Исключить повреждение полупроводниковых переходов при хранении и работе можно содержанием микросхем, транзисторов, изделий интегральной электроники в слое фольги.

Аналогичный результат, в частности, получается, если обмотать контакты их выводов тонкой медной проволочкой без изоляции.

Совет №2: снятие статики с работающего оборудования

Работать лучше всего профессиональной паяльной станцией с заземленным наконечником. Если ее нет, то заземлите отдельными проводниками жало паяльника и монтажную плату. Выводы транзистора зашунтируйте тонкой проволочкой, которая будет снята после пайки.

Снять опасный потенциал статики с пинцета и инструмента, которым будете работать, позволяет заземляющий браслет на руке или иной части тела. Его сопротивление в 1 МОм исключает возможность опасного статического разряда.

Совет №3: подготовка рабочего места

Сухой воздух северных широт, особенно зимой, способствует накоплению статики на окружающих предметах. Увлажнители и мойки воздуха успешно борются с этим явлением.

Антистатический коврик сразу надежно снимает статические потенциалы, воздействия электрических помех из окружающей среды.

Совет№4: профессиональные смеси

Специальный флюс марки FluxOff не только отлично смывает канифоль и следы от коррозии, но реально убирает статику. Им достаточно просто смочить плату.

Совет №5: быстрая пайка

Выбирайте минимально необходимую мощность паяльника, но работайте им быстро. Опытные ремонтники умудряются разогреть жало, взять им припой, обесточить паяльник и затем припаять деталь на место.

Часть современных микросхем и транзисторов имеет защиту от статики, но это не отменяет необходимости соблюдать правила безопасной пайки со всеми остальными изделиями.

Режим насыщения

У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база — эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.

Проводимость транзисторов

Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:

  1. P-N-P.
  2. N-P-N.

К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.

Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база — эмиттер».
  2. При этом канал «коллектор — эмиттер» открывается.
  3. Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Интеллектуальные силовые ключи верхнего уровня с аналоговым диагностическим выходом

Семейства AUIR331x, AUIR332x, AUIPS71xx (таблица 4) являются более совершенными по сравнению с вышеописанными ключами. Они обладают самой продвинутой системой диагностики. Аналоговый выход позволяет определять не только аварийные ситуации, но и величину протекающего тока (рисунок 9). Это может быть полезно, если необходимо контролировать броски тока, когда коммутируется, к примеру, лампа освещения или емкостная нагрузка. В этом случае управляющая система сама определяет, необходимо ли защитное отключение.

Таблица 4. Интеллектуальные ключи верхнего уровня с аналоговым диагностическим выходом

Наименование Число каналов Rси вкл., мОм U вых. макс, B Защита по току Корпус Применение Особенности
Тип защиты I выкл., А
AUIR3313 1 7 40 Подстраиваемое защитное отключение 10…90 TO220-5 D2PAK-5 Автомобильные системы подогрева стекол, кресел Подстройка величины защитного тока
AUIR3314 1 12 40 Подстраиваемое защитное отключение 6…60 TO220-5 D2PAK-5 Защита от перегрева
AUIR3315 1 20 40 Подстраиваемое защитное отключение 3…30 TO220-5 D2PAK-5 Диагностический аналоговый выход
AUIR3316 1 7 40 Подстраиваемое защитное отключение 10…90 TO220-5 D2PAK-5 Свечи накаливания Защита от обратной полярности напряжения питания
AUIR3317 1 7 40 Защитное отключение 120 TO220-5 D2PAK-5 Защитная функция WAIT
AUIR3320 1 4 40 Подстраиваемое защитное отключение 10…55 D2PAK-5 Замена силовых реле Функция активного ограничения тока
AUIPS7125 1 30 65 Защитное отключение 60 DPAK-5 Диагностический аналоговый выход

Рис. 9. Диагностика состояния ключа

Ключи имеют рекордно низкие значения сопротивлений открытого ключа (всего 4 мОм у AUIR3320, 7,5 мОм у AUIPS7111). Управляющее напряжение измеряется относительно напряжения питания, что делает возможным использовать внешний транзистор, обеспечивающий дополнительную защиту управляющих схем (рисунок 10).

Степень защиты данных ключей максимально высока. Ключи имеют защиту от перегрузки по току, от перегрева, неправильной полярности питающего напряжения. Реализована функция активного ограничения тока.

Защита от обратной полярности батареи требует наличия обратного диода на входе. Если используется полевой транзистор, то будет достаточно встроенного диода. Если используется биполярный транзистор — нужен внешний диод (рисунок 10).

Рис. 10. Схема включения IPS верхнего уровня с аналоговым диагностическим выходом

Ключи AUIR331x (кроме AUIR3317) и AUIR3320 имеют программируемое значение тока защитного отключения. Величина этого тока определяется резистором обратной связи Rос (рисунок 11). Кроме того, для дополнительной гарантированной защиты от перегрева реализована защитная функция WAIT (рисунок 4б). Минусом реализации функции WAIT является ограничение использования данных ключей в ШИМ-режиме.

Рис. 11. Установка тока защитного отключения

Ключи AUIR71xx ограниченно могут применяться для ШИМ-приложений, так как не имеют функции WAIT и имеют малое собственное сопротивление. Однако стоит остерегаться использования слишком высоких значений частот, чтобы не перегреть кристалл (рисунок 4а).

IPS данного семейства, обладая низким значением сопротивления, идеально подходят для реализации внутреннего и внешнего автомобильного освещения, систем подогрева зеркал и сидений, питания активной подвески, питания электромагнитных клапанов системы впрыска топлива. Эти ключи представляют идеальную замену для реле в цепях с большими протекающими токами.

Транзисторный ключ с оптической развязкой

Схема, ставшая уже типовой, показана на рисунке 1. Данная схема позволяет гальванически развязать управляющие цепи и цепь первичной сети 220 вольт. В качестве развязывающего элемента применен оптрон TLP521. Можно применить и другие импортные или отечественные транзисторные оптроны. Схема простая и работает следующим образом. Кода напряжение на входных клеммах равно нулю, светодиод оптрона не светится, транзистор оптрона закрыт и не шунтирует затвор мощных коммутирующих транзисторов. Таким образом, на их затворах присутствует открывающее напряжение, равное напряжению стабилизации стабилитрона VD1. В этом случае транзисторы открыты и работают по очереди, в зависимости от полярности напряжения в данный момент времени. Допусти, на выходном выводе схемы 4 присутствует плюс, а на клемме 3 – минус. Тогда ток нагрузки потечет от клеммы 3 к клемме 5, через нагрузку к клемме 6, далее через внутренний защитный диод транзистора VT2, через открытый транзистор VT1 к клемме 4. При смене полярности питающего напряжения, ток нагрузки потечет уже через диод транзистора VT1 и открытый транзистор VT2. Элементы схемы R3, R3, C1 и VD1 не что иное, как безтрансформаторный источник питания. Номинал резистора R1 соответствует входному напряжению пять вольт и может быть изменен при необходимости.

Вся схема выполнена в виде функционально законченного блочка. Элементы схемы установлены на небольшой П-образной печатной плате, показанной на рисунке 2. Сама плата одним винтом крепится к пластине из алюминия с размерами 56×43х6 мм, являющейся первичным теплоотводом. К ней же через теплопроводную пасту и слюдяные изолирующие прокладки с помощью винтов с втулками крепятся и мощные транзисторы VT1 и VT2. Угловые отверстия сверятся и в плате и в пластине и служат, при необходимости, для крепления блока к другому более мощному теплоотводу.

Изолированные драйверы затворов

Для получения очень высоких мощностей разработчики начинают использовать такие топологии, как двухключевой прямоходовый преобразователь, полумостовой или мостовой преобразователи. Во всех этих топологиях необходимо применять плавающий ключ.

Существуют решения этой задачи с использованием полупроводниковых компонентов, но только для низковольтных применений. Интегральные драйверы верхнего плеча не предоставляют разработчику достаточной гибкости, а также не обеспечивают такого уровня защиты, изоляции, устойчивости к переходным процессам и подавления синфазных помех, который дает хорошо спроектированный и изготовленный трансформатор для управления затвором.

На рис. 4 показан самый примитивный способ получения плавающего управления затвором. Выход микросхемы драйвера подключен через разделительный конденсатор к небольшому трансформатору (обычно тороидальному для лучшей производительности). Вторичная обмотка подключена непосредственно к затвору ПТ, и любые замедляющие резисторы должны располагаться со стороны первичной обмотки трансформатора

Обратите внимание на стабилитроны в затворе для защиты от переходных процессов. На выходе драйвера необходимо использовать ограничительные диоды, ими нельзя пренебрегать, даже если при первых испытаниях не возникли проблемы с реактивными токами в трансформаторе

Рис. 4. Простейшая изолированная схема для управления затвором

В простейшей изолированной схеме для управления затвором используется трансформатор, как показано на рис. 4. Ограничительные диоды необходимы для защиты от реактивных токов, а разделительный конденсатор предотвращает насыщение трансформатора. Конденсатор дает сдвиг уровня выходного напряжения драйвера, который зависит от относительной длительности управляющих импульсов.

Схема, представленная на рис. 4, обеспечивает отрицательное напряжение на вторичной обмотке на интервалах времени, когда ПТ выключен

Это значительно увеличивает устойчивость к синфазным помехам, что особенно важно для мостовых схем

Однако недостаток отрицательного смещения это уменьшение положительного напряжения, открывающего ПТ. При небольшой относительной длительности импульсов положительный импульс большой. При относительной длительности, равной 50%, половина имеющегося напряжения драйвера теряется. При большой относительной длительности положительного напряжения может не хватить для полного открывания ПТ.

Схемы с трансформаторной развязкой наиболее эффективны при относительной длительности от 0 до 50%. К счастью, именно это и нужно для прямоходовых, мостовых и полумостовых преобразователей.

Обратите внимание: на рис. 5 показано, как напряжение на разделительном конденсаторе смещается под действием низкочастотных колебаний, наложенных на выходные импульсы драйвера

Эти колебания должны тщательно подавляться для обеспечения безопасной работы. Обычно для борьбы с этим явлением увеличивают емкость конденсатора, что уменьшает Q для низкочастотных составляющих. Необходимо проверить работу схемы при всех возможных переходных процессах, особенно при старте, когда конденсатор разряжен.

Рис. 5. Колебания, возникающие в разделительном конденсаторе и влияющие на работу трансформатора