Откуда берется электроэнергия?
Мало кто знает, как производится электроэнергия, что кажется нереальным, поскольку это одна из самых важных вещей, которую мы используем каждый день.
Фактически электричество генерируется из следующих источников:
- Энергия ветра с использованием ветряков.
- Энергия воды, которая помогает производить гидроэлектрическую энергию.
- Угля, сжигаемого для производства электроэнергии.
- Солнечная енернетика, вырабатываемой солнечными лучами.
Принимая во внимание какую роль играет электричество в жизни человека – чтобы поддерживать наш нынешний образ жизни и достижения в жизни, это то, что нельзя воспринимать как должное
По сей день в слаборазвитых странах через бедность многие люди живут без электричества.
Источник
Великие открытия 18-19 веков
Исследования в области электричества были успешно продолжены другими учеными. Так в 1707 году французский физик Дю Фей обнаружил разницу между электричеством, получаемым от трения о разные материалы. Для экспериментов использовались круги из стекла и древесной смолы.
В 1729 году английскими учеными Греем и Уилером было установлено, что отдельные виды веществ способны пропускать сквозь себя электричество. Именно с их открытия все тела начали разделяться по типам и называться проводниками и непроводниками электричества. В этом же году голландский физик Мушенбрук из Лейдена сделал грандиозное открытие. В ходе опытов со стеклянной банкой, закрытой с двух сторон листами станиоля, было установлено, что такой сосуд способен накапливать электричество. По месту проведения эксперимента данный прибор был назван лейденской банкой.
Большой вклад в науку внес американский ученый и общественный деятель Бенджамин Франклин. Он доказал теорию совместного существования положительного и отрицательного электричества, объяснил процессы, происходящие во время зарядки и разрядки лейденской банки. Было установлено, что свободная электризация обкладок этого прибора может происходить под действием разных электрических зарядов. Бенджамин Франклин много времени уделял изучению атмосферного электричества и доказал с помощью громоотвода возникновение молнии от разности электрических потенциалов.
В 1785 году французским ученым Шарлем Кулоном был открыт закон, описывающий электрическое взаимодействие между точечными зарядами. Открытие точного физического закона произошло без сложного лабораторного оборудования, с помощью лишь стальных шариков. Для определения расстояния и силы взаимодействия использовались такие же крутильные весы, как и при исследованиях сил тяготения между двумя телами. Ученый не пользовался абсолютной величиной электрических зарядов, он просто брал два одинаковых заряда или неодинаковые, но с заранее известной разницей их величины.
Важное открытие в области электричества было сделано итальянским ученым Алессандро Вольта в 1800 году. Этим изобретением стала химическая батарея, состоящая из круглых серебряных пластинок, переложенных кусками бумаги, предварительно смоченных соленой водой
Химические реакции, возникающие в батарее, способствовали регулярному вырабатыванию электрического тока.
В 1831 году знаменитый английский физик Майкл Фарадей открыл явление электромагнитной индукции, и на ее основе первым в мире изобрел электрический генератор. С именем Майкл Фарадей связаны понятия электрического и магнитного поля, изобретение простейшего электродвигателя.
Вся история электричества была бы неполной без выдающегося изобретателя Николы Тесла, работавшего на рубеже 19-20 веков и значительно обогнавшего свое время. Свои исследования в области магнетизма и электричества он постоянно переводил в практическую плоскость. Приборы, созданные гениальным ученым, до сих пор считаются уникальными и неповторимыми.
В течение всей своей жизни, посвященной изучению возможностей электричества, Тесла зарегистрировал множество патентов, сделал открытия, ставшие прорывом в электротехнике. Большинство изобретений и открытий, так или иначе до сих пор используются в повседневной жизни. Из наиболее известных работ следует отметить вращающееся магнитное поле, позволяющее использовать переменный ток в электродвигателях без преобразования в постоянный ток. Также Тесла создал двигатель переменного тока, на основе которого в дальнейшем был создан генератор переменного тока. Эти и другие открытия успешно использовались во многих технических решениях.
Ученых, сделавших весомый вклад в развитие науки об электричестве, можно перечислять очень долго. В завершение хочется отметить Георга Ома, который в ходе экспериментов вывел основной закон электрической цепи. Благодаря Ому появились такие термины, как электродвижущая сила, проводимость, падение напряжения и другие. Не менее известен Ампер Андре-Мари, придумавший правило правой руки для определения направления тока на магнитную стрелку. Ему принадлежит и конструкция усилителя магнитного поля, представляющего собой катушку с большим количеством витков. Эти и другие ученые много сделали для того, чтобы человечество в полной мере пользовалось теми благами, которые дает электричество.
https://youtube.com/watch?v=Gjl40xbSduk
Электричество из воздуха своими руками
Электричество из земли
Электричество из магнита
Как получить электричество из картошки
Как снять статическое электричество
Электричество в доме
Советы начинающим
Чтобы получить начальное представление об электричестве и принципах работы устройств с его применением, рекомендуется пройти специальный курс или изучить пособие «Электротехника для начинающих». Подобные материалы разработаны специально для тех, кто пытается с нуля освоить данную науку и получить необходимые навыки для работы с электрооборудованием в быту.
Советы начинающим электрикам
В пособии и видеоуроках подробно рассказывается, как устроена электрическая цепь, что такое фаза, а что такое ноль, чем отличается сопротивление от напряжения и силы тока и так далее
Отдельное внимание уделяется технике безопасности, чтобы избежать травм при работе с электроприборами
Конечно, изучение курсов или чтение пособий не позволит стать профессиональным электриком или электромонтером, но решить большинство бытовых вопросов по итогам освоения материала будет вполне по силам. Для профессиональной работы требуется уже получение специального допуска и наличие профильного образования. Без этого выполнять должностные обязанности запрещается различными инструкциями. Если же предприятие допустит человека без необходимого образования к работе с электрооборудованием, и он получит травму, руководитель понесет серьезное наказание, вплоть до уголовного.
- https://elquanta.ru/teoriya/ehlektrotekhnika-dlya-nachinayushhikh.html
- https://amperof.ru/teoriya/osnovy-elektrotexniki.html
- https://panelektro.ru/ampery/kak-nauchitsya-razbiratsya-v-elektrike.html
- https://rusenergetics.ru/polezno-znat/formuly-elektrichestva
- https://elesant.ru/osnovy-elektriki/zakony-elektrotexniki
Масштаб травматизма
Различают следующие масштабы травматизма, которые зависят от факторов:
Продолжительность пребывания человека под действием электротока. Чем выше показатель, тем больше вероятность получения травм и летального исхода.
Защитные функции организма (вместе с сопротивлением тела) снижаются при длительном контакте. Доказано, что при длительности поражения 1-2 минуты, сопротивление может снизиться на 25%. Увеличивается негативное влияние на работу сердца. Если электроток проходит через главный орган во время расслабленного состояния, то действие его наиболее губительно. В таких случаях наступает фибрилляция.
Состояния организма: физическая подготовка, стрессоустойчивость, наличие хронических болезней, острой фазы течения заболеваний.
Во время острого цикла болезни или при наличии хронических заболеваний индивид более уязвим, чем лицо, у которого нет серьёзных проблем со здоровьем. Проблемы сердечно-сосудистой системы увеличивают вероятность получить серьёзные повреждения. Ток течёт по пути наименьшего сопротивления, поэтому поражёнными будут те органы, которые работают не стабильно.
Сухие кожные покровы имеют сопротивление большее, чем после увлажнения. Растворенные соли и кислоты, сокращают величину сопротивления в 1,5-2 раза. Пот и грязь повышают удельную электропроводность кожи. Действие электротока в данном случае становится более значительным.
Удельное сопротивление кожных покровов тела имеет разное значение. Наименьшим – обладает эпидермис ладоней, лица, паховых зон, шеи, там, где толщина его слоя минимальна. Также люди с крупной комплекцией обладают большим сопротивлением. Уязвимыми считаются участки тела с большим количеством потовых желез.
Величина тока пола и возраста. Женщины и дети при одинаковых условиях инцидента пострадают больше, чем мужчины.
Как выглядит электроожог у ребёнка
Во время стресса защитные функции организма также уменьшаются, следовательно, лица, обладающие стрессоустойчивостью менее уязвимы.
Местность с меньшим значением относительного давления атмосферы является более опасной зоной. Разрежение (низкое содержание кислорода в воздухе) способствует увеличению негативного влияния физической величины.
Характеристика сети: класс напряжения, тип и сила тока, частоты сети и др.
Класс напряжения имеет второстепенную значимость по сравнению с понятием тока при инциденте. При одном и том же напряжении силы тока может отличаться в тысячи раз.
Ощутимый ток – до 1,5 мА. Вызывает дискомфорт при прохождении через кожные покровы. В большинстве случаев он неопасен.
Не отпускающий ток. (3-5 мА). Вызывает сокращения мышечных тканей. При увеличении параметра до 15мА, пострадавший начинает испытывать значительные болевые ощущения. Высвободиться самостоятельно становится невозможно.
Фибрилляционный ток 100мА..5А. наблюдаются нарушения работы всех систем организма.
При преодолении порога в 5А мгновенно наступает электрический шок в результате остановки сердца и дыхания. Длительное воздействие ведёт к смерти.
Доказано, что влияние переменного тока в сетях до 0,4 кВ намного опаснее постоянного. Далее, опасность последнего становится больше (при частоте 50 Гц). При увеличении рабочей частоты до 10 кГц организм подвергается тепловому воздействию (получение электроожогов).
Обстоятельств инцидента – места, быстроты оказания доврачебной помощи.
Влажность в помещении, действия во время прохождения зарядов по телу, качество оказания помощи и д. р. первостепенно влияют на исход случая.
Пути прохождения электротока по организму. Если заряды проходят, не задевая внутренние органы, то шансы выжить высоки.
Самыми опасными являются цепочки рука-рука, рука-нога, т. е. такие, при которых страдают жизненно важные органы. Прикосновения рефлексогенными областями также являются опасными (грудь, шея, виски).
Получение электротравмы человеком
Существует ряд случаев, когда контакт с электричеством не представляет опасность для организма:
- Контакт в сухих помещениях с сетями 20 В. Человек не получит электротравмы при касании опасных предметов. При таком воздействии не происходит судорог, и пострадавший может самостоятельно высвободиться.
- Напряжение 12 В считается безопасным в сырых комнатах.
Освещение в детских комнатах применяют на 12 В. Эта мера применяется для снижения риска получения травмы ребёнком.
Направление и величина электрического тока. Количество электричества
Мы неоднократно подчеркивали, что электроны в электрическом поле перемещаются от точек с более низким потенциалом к точкам с более высоким потенциалом. Следовательно, и в электрической цепи, показанной на рис. 1, электроны движутся от отрицательного полюса источника электрической энергии к положительному: поэтому следовало бы считать, что электрический ток идет от минуса (—) к плюсу ( + ).
Рисунок 1. Простейшая электрическая цепь
Однако до объяснения электрических явлений с точки зрения электронной теории, т. е. когда природа электрического тока не была достаточно изучена, полагали, что ток идет от положительного полюса источника к отрицательному.
Чтобы не менять этого установившегося и прочно вошедшего в практику положения, решили сохранить такую условность и считать, что ток идет от плюса к минусу, как показано на рис. 2. В действительности же в металлических проводниках ток проходит в обратном направлении.
Рисунок 2. Направление движения электронов в проводнике и направление тока
С ростом напряженности внешнего электрического поля увеличивается сила, действующая на электроны в проводнике. Электроны начинают перемещаться по проводнйку быстрее, а значит, увеличивается количество электричества, проходящее через поперечное сечение проводника в единицу времени.
Для характеристики интенсивности движения электрических зарядов в проводниках вводится понятие о силе тока или токе.
Определение: Силой тока называется количество электричества, проходящее через поперечное сечение проводника в единицу времени.
Сила тока (ток) обозначается буквой I или i.
Если за время t через поперечное сечение проводника прошло количество электричества q, то ток в проводнике можно определить по формуле:
За единицу тока принимается ампер (сокращенно обозначается буквой А). В ГОСТ приведено следующее определение этой основной электрической единицы: «ампер — сила неизменяющегося тока, который, проходя по двум параллельным прямоугольным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2*10-7 единицы силы на каждый метр длины».
Следует подчеркнуть, что ампер — единственная основная электрическая единица. Все остальные единицы, используемые при электрических и магнитных измерениях, определяются через четыре основные единицы Международной системы единиц (метр — килограмм — секунда — ампер).
Единица измерения тока названа по имени французского физика и математика Андре Мари Ампера (1775—1836), открывшего закон взаимодействия электрических токов и предложившего новую гипотезу для объяснения магнитных свойств вещества.
В радиотехнике часто приходится иметь дело с токами, величина которых в тысячи и даже миллионы раз меньше одного ампера. Такие токи измеряются в миллиамперах (сокращенно обозначается мА или mА) или в микроамперах (сокращенно обозначается мкА или μА). Миллиампер одна тысячная доля ампера, т. е.
1 мА = 0,001 А, или 1 А = 1000 мА.
Микроампер — это одна миллионная доля ампера или одна тысячная доля миллиампера, т. е.
1 мкА = 0,001 мА = 0,000001 А.
Полезно запомнить также следующие соотношения:
1 мА= 1000 мкА = 0,001 А; 1 А = 1000 мА = 1 000 000 мкА.
При рассмотрении вопросов взаимодействия зарядов мы сказали, что количество электричества измеряется в кулонах. При этом количество электричества в 1 кулоне соответствует приблизительно общему заряду 6 • 1018 электронов. Сейчас можно дать более строгое определение кулона:
Определение: кулон — это количество электричества, проходящее через поперечное сечение проводника в течение 1 секунды при неизменяющемся токе в 1 ампер.
Эта единица количества электричества часто называется ампер-секундой (сокращенное обозначение А-с). На практике количество электричества измеряется в ампер-часах (А-ч).
Если известен ток I в проводнике, то количество электричества q, прошедшее через поперечное сечение проводника за время t, можно определить по формуле:
где q — в кулонах; I— в амперах; t — в секундах.
Для измерения тока в цепи применяются приборы, называемые амперметрами. Амперметр включается в цепь так, чтобы через него проходил весь измеряемый им ток (рис. 3).
Рисунок 3. Схема включения амперметра в электрическую цепь. Б — источник напряжения; PA — амерметр; EL — нагрузка (лампа).
Похожие материалы:
- Протекание тока
- Электрический ток в металлических проводниках
- Электродвижущая сила (ЭДС) источника энергии
- Электрическое сопротивление проводника. Электрическая проводимость
- Электрический ток в электролитах
- Ток смещения в диэлектрике
- Электрический ток в полупроводниках
- Электрический ток в газах
На пути к появлению электричества
Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество»
С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного
Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.
Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.
Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта, который придумал и изобрел гальванический элемент – источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.
Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ – двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.
Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.
Также важную роль в изобретении электричества сыграли:
- Пьер Кюри.
- Эрнест Резерфорд.
- Д. К. Максвелл.
- Генрих Рудольф Герц.
В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый – американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.
Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).
Как работает электричество, электризация
Положительный и отрицательный ионы
Как уже было отмечено, по умолчанию, атом электрически нейтрален: положительный и отрицательный заряды равны. Они компенсируют другу друга. Но, если, вдруг, представить себе, что хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов превысит отрицательный заряд всех оставшихся электронов. Поэтому такой атом в целом имеет свойства положительного заряда и называется положительный ион.
Электризация
Атом, получивший дополнительный электрон, будет иметь в преобладающей степени отрицательный заряд. В этом случае атом называется отрицательный ион.
Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.
Электризация
Электризацией называют процесс получения дополнительного электрона, либо наоборот его потерю. Если какое-либо тело имеет избыток или нехватку электронов, то есть явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.
Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.
Электризация трением
А вот, при натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.
Электризация металла
Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.
Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей, не получится одновременно по всей поверхности отделить оба металлических предмета. Так, в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.
Статическое электричество
Итак, теперь нам известно, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию. Затем они покидают атомы одного тела, которое становится положительно заряженным. Эти электроны занимают места на орбитах атомов другого вещества. Которое, в свою очередь, приобретает свойства отрицательного заряда. При этом одноименные заряды отталкиваются друг от друга, а разноименные – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.
В рассмотренных примерах получают так называемое статическое электричество.
Электрическая сила
В процессе электризации к заряженной пластмассовой палочке будут сами собой притягиваться кусочки бумаги. Почему это происходит?
Попробуем раскрыть тайну физического процесса. Она заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным. А противоположный край, соответственно, положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.
Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага. Той поверхностью, на которой скопились отрицательные заряды. И наоборот.
Формула закона Кулона