Что такое варистор, основные технические параметры, для чего используется

Содержание

Проведение проверки варистора мультиметром

Для проведения этой уникальнейшей операции, нам необходимы следующие приспособления:

  • Первым делом, конечно же отвертка (обычно требуется фигурная). Чтобы пробраться до платы, необходимо вскрыть корпус устройства, а тут как известно без неё не обойтись.
  • Требуется запастись будет еще и щёткой. Она нужна будет, чтобы очистить плату от накопившейся пыли. Из практики уже известно, что в блоках питания всегда ее скапливается очень много, особенно если устройство оснащено собственным охлаждением (вентилятором), характерный пример, – блок питания компьютера.
  • Важная вещь в подобной процедуре — паяльник. Без него никак. Нужно отпаять и обратно припаять варистор. Как правило внутри силовых блоков большие дорожки на платах и совершенно нет мелких деталей, поэтому можете смело пользоваться паяльником до 75 Вт.
  • Канифоль и припой (наверное, наиболее необходимое. Припаять обратно деталь без них не получится).
  • Мультиметр (электронный или аналоговый), чтобы иметь возможность замерить сопротивление.

Как только весь инструментарий будет готов, можно приступать к операции. Главное придерживайтесь схемы и все получится как нужно:

  1. Вскрываем устройство. Детально рассказать, как это сделать сложновато, ведь конструкции разных приборов разнятся между собой. В любом случае, всю эту техническую информацию Вы можете найти в паспорте устройства, в интернете (на различных тематических форумах и сайтах).
  2. Как только доберётесь до печатной платы, постарайтесь очистить её от пыли. Работайте как можно более аккуратно, чтобы не нанести вред радиодеталям. Отмечены случаи, когда излишнее усердие наносило больше вреда, чем пользы, так как щетина на щетке царапала тот или иной компонент схемы.
  3. Когда с пылью будет покончено, найдите варистор. Его отличает настолько специфический вид, что перепутать его невозможно.
  4. Найдя на плате варистор, прежде всего тщательно осмотрите его. Если видны трещинки, какие-либо сколы, либо другие механические повреждения корпуса, то это уже говорит о неисправности.
  5. Если были обнаружена какие-либо нарушения целостности корпуса, то выпаиваем повреждённый элемент, а вместо него ставим точно такой же или аналогичный. Найти замену Вы можете самостоятельно, ориентируясь на указанную на варисторе информацию, либо обратитесь к специалисту.
  6. Если при тщательном зрительном осмотре видимых повреждений не обнаружено, то следует пустить в ход мультиметр, конечно предварительно будет необходимо выпаять деталь с платы. Цепляем щупы мультиметра к нашей детали и выставляем режим замера максимального сопротивления.
  7. Щупы тестера прижимаем к ножкам варистора и замеряем сопротивление. В идеале мультиметр должен показать высокие значения до бесконечности. Если перед Вами другое значение, то это говорит о неисправности варистора и его необходимо заменить.
  8. Во время измерений, внимательно следите, чтобы не коснуться руками щупов мультиметра. Иначе он будет показывать сопротивление вашего тела. Если есть необходимость заменяем варистор и собираем корпус устройства обратно.

Вариант 1

Первоначально проводим визуальный осмотр. Для этого отключаем аппарат от питания, вскрываем корпус и определяем где находится предохранитель. Далее извлекаем его и проверяем. Если предохранитель перегорел или негоден, то он заменяется. И только когда мы проверили предохранитель и заменили, переходим к нахождению и тестированию варистора. Его сложно не заметить, так как он выкрашен обычно в красные, синие или жёлтые цвета. Это маленький дискообразный элемент. Обычно крепится на предохраняющем держателе.

Далее отсоединяем любой из проводов, для этого нагреваем его паяльником и извлекаем варистор с платы при помощи плоскогубцев.

Сама проверка основана на замере показателя сопротивления: включаем тестер, переводим его в позицию замера сопротивления; фиксируем жала щупов на выводах варистора. Далее проводится замер.

Вариант 2

Другой способ берет за основу данные из инструкции или спецификации устройства для определения показателей нормальной работы варистора. За символом «CH», которым обозначается нелинейное сопротивление, указано значение, которое производитель заложил в конструкцию или которые свойственны тому материалу, из которого изготовлен варистор. Значения, сопровождаемые маркировкой «B±…%», показывают уровень предельного сопротивления и допуск.

Трактовка результатов

Проведя наружный осмотр и проверку мультиметром, мы можем определиться с исправностью детали либо убедиться в необходимости его замены. Сопротивление неисправного варистора как правило выше 100 Ом. Если в результате тестирования прибор показывает свыше 1 миллиона Ом, то такой варистор замене не подлежит.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Вам это будет интересно Характеристика и схема подключения электросчётчика СО-505

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

Биполярный транзистор

Наиболее распространенные транзисторы. Используются в основном в схемах усиления или генерации сигнала: в усилителях, генераторах, модуляторах, инверторах и т. д. Бывают двух типов: p-n-p и n-p-n. Не углубляясь в структуру полупроводникового прибора, достаточно будет сказать, что каждый p-n переход представляет собой диод. Строго говоря, это не совсем так, но для проверки работоспособности такое представление вполне допустимо. Таким образом, последовательность p-n-p представима в виде двух диодов, соединенных катодами, а n-p-n – двух диодов, соединенных анодами. Чтобы проверить, работоспособность такого элемента, нужно мультиметром замерить сопротивление переходов.

Определение работоспособности p-n-p полупроводника:

  • Берется мультиметр. Черный провод (обозначим его как Ч) помещается в гнездо COM (минус).
  • Красный (К) – в гнездо VΩmA (плюс).
  • Тестер выставляется на замер электрического сопротивления. Предельное значение выбирается 2 кОм. Это означает, что мультиметр может корректно измерять сопротивление от 0 до 2000 Ом. При превышении данного порога, на экране прибора загорится «1».
  • Для замера прямых сопротивлений Ч закрепляется на базе элемента.
  • Чтобы замерить величину сопротивления эмиттерного перехода, К помещается на эмиттер.
  • Измеренное значение должно быть от 500 до 1200 Ом. Аналогично и для коллектора.
  • Для измерения обратных сопротивлений на базе элемента закрепляется К. Ч поочередно помещается на коллектор и эмиттер. Полученные значения должны превышать установленный порог в 2кОм. Об этом, в обоих случаях, будет свидетельствовать цифра «1» на экране тестера.
  • Для n-p-n полупроводника применяется та же самая методика. За исключение того, что в п.1 Ч и К помещаются в противоположные гнезда. Тем самым меняется полярность щупов тестера.

Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Вам это будет интересно Как используется эффект Холла: принципы явления и способы применения

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

https://youtube.com/watch?v=FY2nftckT1s

Проверка резистора на годность мультиметром

Рассмотрим такие вопросы как полярность резистора, как определить резистор на плате, как измерить его мультиметром, когда нужно подключать паяльник, как на замерения влияет переменный ток.

  1. Подключите щупы к цифровому мультиметру. Подключите черный зонд к порту com (common), а красный зонд – к порту, помеченному символом Ома, который выглядит как перевернутая подкова. Для тех из вас, кто помнит греческий, символом Ом является греческая буква Омега. Этот цифровой мультиметр имеет банановые гнезда для разъемов порта. Другие цифровые мультиметры могут иметь винтовые клеммы или разъемы BNC.
  2. Подсоедините зажимы типа «крокодил» к каждой клемме резистора. Наиболее распространенные резисторы имеют 4-х цветную полосу. Первые два цвета указывают значения, 3-я полоса указывает множитель, а 4-я полоса указывает % допуска значения резистора. Изображенный резистор красный (2), фиолетовый (7), оранжевый (х 1000) и золотой (5%). Этот резистор должен теоретически иметь значение 2700 Ом с допуском 5% от значения. Чем ниже значение допуска, тем лучше резистор.
  3. Установите для цифрового циферблата мультиметра значение Ом (Омега). Некоторые менее дорогие цифровые мультиметры имеют настройки Ом с множителями (х 100, х 1000 и т. Д.). Показанный цифровой мультиметр является автоматическим выбором диапазона, поэтому множитель будет отображаться на экране вместе с показаниями, которые и позволят померить данные.
  4. Возьмите показания цифрового мультиметра. Изображенный тест показывает значение 27,02 кОм. Следовательно, значение резистора составляет 2702 Ом. Это значение находится в пределах 5% отклонения от 2700 Ом. Резистор готов для вашего проекта.
  5. Возьмите показания цифрового мультиметра. Этот резистор имеет цветовой код зеленый, коричневый, золотой и поэтому должен иметь значение 510 Ом. Цифровой мультиметр показывает 509 Ом. Тест цифрового мультиметра показывает хороший резистор.

Виды и принцип работы

Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:

  1. Высоковольтные с рабочим напряжением до 20 кВ.
  2. Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.

В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.

Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.

Разборка блока питания и поиск неисправности

Ремонт начал с разборки, и проверки предохранителя. При проверке, мультиметр показал бесконечность, что свидетельствует о обрыве предохранителя.

Блок питания после разборки. Расположение предохранителя на плате.

Зачастую, сгоревший предохранитель является лишь следствием, а причину поломки предстоит еще найти. Для этих целей, я использовал лампу накаливания номиналом 100Вт, подкинув ее вместо предохранителя. В нормальном состоянии, она должна загореться (в момент зарядки сетевых конденсаторов), а потом притухнуть. В дежурном режиме, когда потребление блока питания небольшое, лампа может немного загораться, после чего погаснуть. Такое поведение будет циклично повторятся.

Если лампа ярко загорается, то это может говорить о том, что короткое замыкание в первичной цепи, или же на выходах блока питания есть излишняя нагрузка.

Подкинув лампу, та ярко загорелась.

Лампа накаливания ярко горит при подключении.

Что бы проверить, выдает ли блок питания какие то напряжения, я снова подключил тестер к его выходу. В итоге, тот показал присутствие выходных напряжений .

Выходные напряжения с блока питания

Это был хороший знак, осталось лишь определить причину повышенного потребления тока. Сначала, я было подумал на диодный мост, но в самом начале схемы,немного присмотревшись, я увидел подгоревший варистор. Его неисправность было тяжело заметить, так как он был закрыт термоизоляционной трубкой, сняв которую все стало на свои места. Варистор был прогоревший, и явно вышедший из строя.

Варистор после выпаивания с платы

После снятия термоизоляционной трубки все стало на свои места

Падение напряжения на варисторе. В идеале тестер не должен ничего показать.

Разборка блока питания и поиск неисправности

Ремонт начал с разборки, и проверки предохранителя. При проверке, мультиметр показал бесконечность, что свидетельствует о обрыве предохранителя.

Блок питания после разборки. Расположение предохранителя на плате.

Зачастую, сгоревший предохранитель является лишь следствием, а причину поломки предстоит еще найти. Для этих целей, я использовал лампу накаливания номиналом 100Вт, подкинув ее вместо предохранителя. В нормальном состоянии, она должна загореться (в момент зарядки сетевых конденсаторов), а потом притухнуть. В дежурном режиме, когда потребление блока питания небольшое, лампа может немного загораться, после чего погаснуть. Такое поведение будет циклично повторятся.

Если лампа ярко загорается, то это может говорить о том, что короткое замыкание в первичной цепи, или же на выходах блока питания есть излишняя нагрузка.

Подкинув лампу, та ярко загорелась.

Лампа накаливания ярко горит при подключении.

Что бы проверить, выдает ли блок питания какие то напряжения, я снова подключил тестер к его выходу. В итоге, тот показал присутствие выходных напряжений .

Выходные напряжения с блока питания

Это был хороший знак, осталось лишь определить причину повышенного потребления тока. Сначала, я было подумал на диодный мост, но в самом начале схемы,немного присмотревшись, я увидел подгоревший варистор. Его неисправность было тяжело заметить, так как он был закрыт термоизоляционной трубкой, сняв которую все стало на свои места. Варистор был прогоревший, и явно вышедший из строя.

Варистор после выпаивания с платы

После снятия термоизоляционной трубки все стало на свои места

Падение напряжения на варисторе. В идеале тестер не должен ничего показать.

Разборка блока питания и поиск неисправности

Ремонт начал с разборки, и проверки предохранителя. При проверке, мультиметр показал бесконечность, что свидетельствует о обрыве предохранителя.

Блок питания после разборки. Расположение предохранителя на плате.

Зачастую, сгоревший предохранитель является лишь следствием, а причину поломки предстоит еще найти. Для этих целей, я использовал лампу накаливания номиналом 100Вт, подкинув ее вместо предохранителя. В нормальном состоянии, она должна загореться (в момент зарядки сетевых конденсаторов), а потом притухнуть. В дежурном режиме, когда потребление блока питания небольшое, лампа может немного загораться, после чего погаснуть. Такое поведение будет циклично повторятся.

Если лампа ярко загорается, то это может говорить о том, что короткое замыкание в первичной цепи, или же на выходах блока питания есть излишняя нагрузка.

Подкинув лампу, та ярко загорелась.

Лампа накаливания ярко горит при подключении.

Что бы проверить, выдает ли блок питания какие то напряжения, я снова подключил тестер к его выходу. В итоге, тот показал присутствие выходных напряжений .

Выходные напряжения с блока питания

Это был хороший знак, осталось лишь определить причину повышенного потребления тока. Сначала, я было подумал на диодный мост, но в самом начале схемы,немного присмотревшись, я увидел подгоревший варистор. Его неисправность было тяжело заметить, так как он был закрыт термоизоляционной трубкой, сняв которую все стало на свои места. Варистор был прогоревший, и явно вышедший из строя.

Варистор после выпаивания с платы

После снятия термоизоляционной трубки все стало на свои места

Падение напряжения на варисторе. В идеале тестер не должен ничего показать.

Применение варистора

Варисторы применяются в большинстве бытовой электроники по всему миру. Их можно встретить практически в любой электронике. Они есть и в автомобильной электронике, в сотовой технике и бытовой, сетевых фильтрах и компьютерном железе. Кстати говоря, хороший блок питания, от китайского отличается наличием варистора у первого. Поэтому, хороший блок питания куда более живуч и ремонтопригоден.

Варистор в блоке питания

Умельцы, при сборе своих подделок из светодиодных ламп также используют варисторы. А особые умельцы умудряются размещать их в розетках и вилках. Что только не придумаешь для обеспечения защиты своей электроники, если в доме проблема со скачками напряжения. Сфера их применения обширна. Это могут быть и установки с напряжением 20кВ и с напряжением в 3В. Это может быть сеть с переменным током, а может быть и с постоянным. Воистину, варисторы можно встретить практически везде.

Так какие же варистор характеристики имеет?

Как правило, для описания варистора используют вот такие параметры:

Емкость варистора в закрытом состоянии. Во время работы её значение может меняться. При особенно большом токе – уменьшается практически до нуля. Обозначается как Со.

Максимальная энергия в Джоулях, которую может поглотить варистор за один импульс. Обозначается W. Максимальное значение импульсного тока, при 8/20мс. Обозначается как Iрр. Среднее квадратичное значение переменного напряжения в цепи. Обозначается как Um. Предельное напряжение при постоянном токе. Обозначается как Um=. Для приблизительных расчетов рабочего напряжения советуем использовать значение Un не больше 0,6 с переменным током и 0,8 с постоянным.

В сетях 220В используют варисторы с минимальным классификационным напряжением (Un) от 380 до 430 В. Не следует забывать и о емкости варистора при подборе. Как правило, она зависит от размера варистора. Так, варистор TVR 20 431 имеет емкость 900пФ, а TVR 05 431 – 80 пФ. Эти величины всегда можно подглядеть в справочном материале.

На схемах варистор обозначается следующим образом

RU – это обозначение самого варистора. Цифра рядом с RU – номер по порядку. То есть, какое это по счету варистор в цепи. Буква U снизу слева у косой, проходящей через варистор, означает, что данный элемент имеет способность менять напряжение. Также, зачастую на схемах указывается маркировка варистора. О маркировке и её расшифровке мы поговорим ниже.

Так обозначают варистор на схемах

Как проверить варистор мультиметром

Существует подробная инструкция по диагностике работоспособности, расписанная до мельчайших деталей. В первую очередь ознакомимся с перечнем инструментов:

  1. Необходимая для разборки корпуса крестовая отвертка. Без нее не получится проникнуть к плате питания.
  2. Очистка производится щеткой. Скопление пыли в этом месте происходит достаточно быстро, что особенно характерно для устройств с компонентами охлаждения.
  3. Паяльник с мощностью до 75 Вт – для работы с силовой частью блока питания.
  4. Припой и канифоль.
  5. Необходимый для замера напряжения мультиметр.

Алгоритм тестирования включает такие операции:

в инструкции, прилагаемой к конкретному устройству, указана схема разборки корпуса. Для каждого варистора данная процедура будет индивидуальной. Нужную информацию можно также получить на сайтах производителей, форумах определенной тематики;
очистка от пыли является обязательным мероприятием после вскрытия печатной платы

Процедура выполняется очень осторожно во избежание повреждений на расположенных в этой зоне деталях. При большом усилии нередки случаи нанесения вреда тиристорам и транзисторам;
после окончания очистки нужно найти варистор

Внешне он может показаться похожим на конденсатор, поэтому внимательно изучите маркировку;

после того, как вы окончательно убедились в том, что нужный элемент найден, проведите тщательный визуальный осмотр. Неисправность довольно часто обнаруживается именно так, ведь сколы и трещины сразу видны. Фактором неполадок будут также почернение в отдельных местах и наличие нагара. В такой ситуации сразу выпаиваем и заменяем устройство. Выбор нового варистора поможет сделать консультант в радиоотделе магазина или расшифровка маркировки изделия;

  • не обнаружив внешних нарушений, производим выпайку варистора для его проверки мультиметром. Без этого получить объективные данные не удастся. Ведь варистор соединен с любым модулем системы параллельным способом;
  • щупы подключаются к зеленым гнездам тестера для выполнения требуемых измерений. Далее следует перевод по красному кругу в режим наибольшего сопротивления при измерении. Есть приборы другого типа, рассматриваемую операцию делают согласно прилагаемой к ним инструкции;
  • делаем соприкосновение щупов к выводам и начинаем замер сопротивления нашего устройства. Данный параметр при правильной настройке всегда бесконечно большой. Если данное условие не выполняется, можно утверждать, что варистор непригоден к работе. Исправить ситуацию может только его замена,

При четком соблюдении всех пунктов инструкции по тестированию вы сумеете сберечь дорогостоящие электронные приборы от поломок и не понесете непредвиденных финансовых расходов.

ЧИТАТЬ ДАЛЕЕ: ГОСТ 30345.0-95 (МЭК 335-1-91) Безопасность бытовых и аналогичных электрических приборов. Общие требования

Как проверить работоспособность варистора?

Мы уже знаем, что варистор – по сути сопротивление. Стало быть, его можно проверить тестером. Простейший способ – замер сопротивления. Необходимо выпаять деталь из схемы, и проверить сопротивление в различных диапазонах измерения.

Важно! Щупы прибора прижимаются непосредственно к ножкам элемента, иначе на точность измерения будет влиять сопротивление ваших пальцев.

Сопротивление должно быть бесконечно большим – это свидетельствует об исправности варистора. Если схема не имеет дополнительного сопротивления в цепи подключения, можно проверить варистор мультиметром не выпаивая.

Например, в том же удлинителе. Только не забудьте выдернуть вилку из розетки, и отключить все потребители, включенные в удлинитель.

При необходимости точного измерения параметров, необходимо собрать схему из не слишком требовательного потребителя (например, мощной лампы накаливания) и предохранителя.

Под нагрузкой понимаем ту самую лампу.

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).


Спецификация модельного ряда серии B598*1

Краткая расшифровка:

Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А

Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели)

Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).


Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Как проверить варистор на плате?

Если деталь входит в состав сложной электросхемы, точно определить параметры сопротивления будет невозможно. Параллельно варистору есть масса сопротивлений, которые будут искажать показания прибора.

Необходимо точно знать, какие элементы подключены в параллель, и каковы их параметры. После этого производится расчет параллельных и последовательных сопротивлений, и делается математическая поправка.

Однако этот способ настолько сложен (в плане вычислений), что радиолюбители его никогда не практикуют. Если вы не хотите нарушать целостность монтажной платы, достаточно выпаять хотя бы одну ножку варистора.

После чего вы подключаете мультиметр к детали, и выполняете проверку стандартным способом. Справедливости ради отметим, что сгоревший варистор почти всегда разрушается, или имеет следы обугливания.

Эта деталь не относится к разряду дорогих: стоимость простого варистора находится в диапазоне 7р – 50р. Так что, если есть подозрение на неисправность, можно просто заменить элемент.

Как заменить варистор на плате или подобрать аналог — видео

Маркировка варистора

Если же ваш варистор вышел из строя, то для его замены нам здорово поможет знание маркировки варистора. Сама маркировка располагается на корпусе и представляет собой набор латинских букв и цифр. Несмотря на разных производителей, в большинстве своем, маркировка на варисторах не сильно отличается и её вполне возможно прочитать.

В качестве примера, приведем 2 разных варистора от разных производителей:

  • CNR -12D182K
  • ZNR V12182U.

Первая цифра 12 – обозначает диаметр варистора в миллиметрах. Вторая цифра – 182К напряжение открытия. 18 – напряжение, 2- коэффициент. CNR же – обозначение материала варистора. В данном конкретном примере, варистор изготовлен из оксидов металлов.

K – используется для обозначения класса точности. То есть, если написано на корпусе варистора – 275К, то К – точность 10%, а 275 – напряжение открытия. И напряжение открытия рассчитывается так – 275 +- 27,5.
То есть, например, наш варистор 20D471K можно заменить варистором TVR20471. Или любым другим аналогом варистора. Например – SAS471D20. Нужно лишь знать основные принципы маркировки.

Правда, с отечественными варисторами так не получится. Придется воспользоваться справочными материалами. Наши варисторы обозначаются так – СН2-1, ВР-1 и СН2-2. Например: CН-2 – оксидо цинковые варисторы. Но узнать это можно только из справочных материалов.

Несмотря на вышеописанные принципы маркировки, настоятельно рекомендуем пользоваться справочной литературой при выборе варистора. В ней указываются все необходимые характеристики варистора, в том числе и те, которые не узнать по маркировке.

Что делать, если у вашего варистора стерта маркировка?

Узнать, на какое напряжение рассчитан ваш варистор вам поможет мегомметр. Чтобы проверить варистор, надо подключить его к мегомметру и прогонять его по пределам. То есть, если варистор на 470В, то проверять его стоит на 500В.

Есть способ, с использованием блока питания. Правда, для этого нужен блок питания, с регулируемым напряжением и максимальной силой тока. Силу тока нужна выставить такую, чтобы варистор не сгорел. А как мы писали выше, они имеют тенденцию взрываться.

Варистор со стёртой маркировкой

Соответственно, перед подключением его следует визуально осмотреть. Если на корпусе варистора имеются трещины, вздутия, визуально видно, что он плавился – то такой варистор точно не рабочий. Но зачастую – это трещины. Материал варисторов склонен к старению, об этом всегда следует помнить. Варисторы, с такими повреждениями, можно не проверять. Они не рабочие.

Подробнее о варисторах в видео:

https://youtube.com/watch?v=9drhaBt7B2I