Схема регулятора оборотов коллекторного двигателя 12в своими руками

Содержание

Шим регулятор большой мощности

Такой ШИМ регулятор может быть применен для управления мощными нагрузками , в том числе и низковольтными электродвигателями.Сегодня постараюсь сделать небольшой поверхностный обзор этого чудо-модуля и показать основные части и принцип работы.

Произведено естественно в Китае, жаль , что на плате затерты многие компоненты, хотя итак понятно что к чему.

Шим регулятор обеспечивает плавную регулировку мощности , диапазон выходных напряжений 10-50 Вольт , что проверялось неоднократно. Максимальный ток до 60 Ампер, а это дает возможность использовать такую плату для управления (регулировки) оборотов электрокаров, скутеров или велосипедов. Модуль как раз специально заточен для таких целей из-за наличия гасящих диодов, которые предназначены для защиты полевых ключей от самоиндукции двигателя.  Для того кто захочет приобрести данный товар, вот ссылка

  • На плате 12 трехвыводных компонента  в  корпусе ТО220, у каждого свой теплоотвод, из них 4 являются диодами , а остальные 8 – полевые транзисторы .
  • Китайские инженеры затерли очень многое на плате, в том числе и полевики (точнее они вообще без маркировки).

Имеется задающий генератор, на выходе которого установлен делитель. Таким образом получено два аналогичных сигнала, которые поступают на двайвера, а их две.

Каждый драйвер управляет линейкой полевиков ( 4 шт) в итоге силовые выводы всех полеввиков включены параллельно.
Схема очень продуманная, но одного китайцы не учли – не имеется защита от кз на выходе.

Вообще это уже второй подобный модуль у меня, в первом варианте был установлен низкоомный шунт – беседа с продавцом подтвердила, что это токовый шунт, с которого берутся показания для системы защиты, т.

е фиксируется падение именно на этом шунте, но когда плата доехала я был в шоке – шунт имеется, но на плате попросту не установлены компоненты схемы защиты , таким образом шунт играет роль банальной перемычки, в итоге эта плата сгорела в один прекрасный миг.

А та плато , о которой сегодня беседуем, пока жива и здорова, но опять же – очень уязвима из-за отсутствия защит.
По схематической части все стандартно – мощный шим регулятор оборотов для движка, важно не превысить максимально допустимое входное напряжение (50 Вольт макс) а то сгорит схема стабилизатора, который обеспечивает питание для шим микросхемы и драйвера

Регулировать яркость галогенных ламп и других пассивных нагрузок тоже можно без проблем. Проверял регулятор под нагрузкой в 30 Ампер , ключи еле -еле теплые , не смотря на маленькие теплоотводы, хотя это стоило ожидать, ведь шим управление гораздо эффективнее, чем линейное.

Ещё раз укажу ссылку на генератор

Принцип работы LM393

Чтобы понять как же работает данный компаратор, рассмотрим простую схему сумеречного автомата.

Глядя на схему мы видим, что оба входа компаратора подключены к делителям напряжения. Первый делитель напряжения, подключенный к инвертирующему входу (2), состоит из постоянного резистора и фоторезистора.

Как известно сопротивление неосвещенного фоторезистора имеет очень большое сопротивление (более 1МОм), и малое при освещении. Поэтому в ночное время суток, согласно логике работы делителя напряжения, напряжение на входе (2) компаратора будет выше, чем в дневное время суток.

Чтобы включать и выключать свет (в нашем случае светодиод), в зависимости от степени освещенности фоторезистора, нам необходимо установить порог переключения. Для этого служит неинвертирующий вход (3) на который необходимо подать опорное (неизменяемое) напряжение. Это опорное напряжение мы возьмем с переменного резистора R3, который выполняет роль делителя напряжения.

Теперь компаратор будет сравнивать два уровня напряжения (на выводах 2 и 3). Если напряжение на входе 2 будет больше чем на входе 3, то светодиод загорится. Как только напряжение на входе 2 опустится (при освещении фоторезистора) ниже уровня напряжения на входе 3, светодиод погаснет.Скачать datasheet LM393 в формате pdf (595,7 KiB, скачано: 6 757)

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

ШИМ на компараторе LM393

Добрый день! Недавно стал интересоваться цифровой схемотехникой и незаметно перешёл к аналоговой. А почему так произошло? Во время проектирования динамической индикации на дискретной логике, появилась идея реализовать ШИМ. Идея интересная, но опыта особенно не было. Поэтому сразу возникла идея поставить микроконтроллер. Но это не так интересно, особенно когда цель учится. И так спустя некоторое время я пришёл к тому, что можно реализовать ШИМ на компараторах.

Концепция ШИМ состоит в том, что есть пилообразный сигнал который поступает на вход компаратора и сигнал с делителя напряжения. И в момент возникновения пересечения, выставляется сигнал на выходе компаратора. Чем ближе напряжение с делителя к пику пилы, тем меньше время высокого сигнала и наоборот.

Задача была сгенерировать пилообразный сигнал. Для этого я решил собрать релаксационный генератор на компараторе

Но особенность его заключается в том, чтобы он был с маленькой скважностью (то есть 90-95% высокий уровень и 5-10% низкий). Это нужно для того, чтобы размах для регулировки ШИМ был практически полным

В ином случае будет доступно только 50% и не более (если генератор со скважностью 50%). И для создания низкой скважности была использована схема разрядки RС цепочки через диод и резистор (резистором R2 задаётся соотношение высокого и низкого уровня).

А затем с помощью интегрирующей (RC) цепочки необходимо сделать пилу. Во время тестирования возникла идея вместо резистора в RC цепочке, использовать источник тока на двух транзисторах. Это было сделано для равномерной зарядки конденсатора. А быстрая разрядка происходит благодаря диоду.

Теперь когда есть источник пилообразного сигнала, не составит труда создать ШИМ сигнал. Для этого необходимо на инвертирующий вход компаратора подать напряжения с делителя. Но тут возникает проблема в том, что для регулировки используется фоторезистор. Его особенность в том, что на свету его сопротивление порядка 1 килоома или нескольких, а в темноте достигает 2-3 мегаомов.

И из этой особенности надо настроить систему так, чтобы напряжение не было выше пикового напряжения пилы, иначе на выходе будет низкий сигнал, что для системы динамической индикации не приемлемо. Для этого было решено, установить подстроечный резистор, которым в темноте надо настроить сопротивление так, чтобы напряжение было чуть ниже пика пилы. Так как в темноте сопротивление фоторезистора мегоомы, а в плече подстроечного резистора будет значительно меньше, поэтому фоторезистор не будет влиять на систему. А при свете его сопротивление уменьшится и не будет уже влиять сопротивление нижнего плеча подстроечного резистора. И так теперь уже не страшно, что в темноте может погаснуть подсветка.

А в конце решил установить полевой транзистор для того, чтобы регулировать значительные нагрузки.

Примечание: В микросхеме LM393 выходы open-drain, а это означает что выходы необходимо подтянуть к питанию через резисторы. А то было очень смешно, собрал и сигнал вроде есть, а вроде нет. Думал, ошибся в схеме, а оказалось надо было просто подтянуть.

Номиналы, которые используются в схеме рассчитаны на частоту ШИМ около 20кГц и напряжение питания 5 вольт

Так же при изменении номиналов надо обратить внимание на интегрирующую цепочку и пересчитать для необходимой частоты

Так же на схеме указаны точки (с щупом) для тестирования.

t1 – прямоугольный сигнал с низкой скважностью. t2 – пилообразный сигнал

t3 – напряжение с делителя напряжения (в крайних значения не должно заходить за пределы напряжения пилы). t4- ШИМ сигнал.

Думаю, такой вариант проверки будет удобен.

Возвращаясь к идее использовать микроконтроллер вместо данной схемы удобна тем, что во-первых стабильность системы будет выше, так как в схеме будут сильные колебания из-за температурных изменений (в особенности сильный разброс параметров керамических конденсаторов) и будет колебаться частота, во-вторых МК проще и даже можно сказать, что дешевле, чем большое количество «расыпухи» и времени затраченного на наладку всего устройства. Так что в каждой отдельной задачи есть своё хорошее, подходящее решение.

В конце статьи прикреплены файлы схемы и печатной платы в EasyEDA.

https://youtube.com/watch?v=kLT8rZ1jyWI

Источник

Шим регулятор на таймере ne555

Потребовалось мне сделать регулятор скорости для пропеллера. Чтобы дым от паяльника сдувать, да морду лица вентилировать. Ну и, для прикола, уложить все в минимальную стоимость.

Проще всего маломощный двигатель постоянного тока, конечно, регулировать переменным резистором, но найти резюк на такой малый номинал, да еще нужной мощности это надо сильно постараться, да и стоить он будет явно не десять рублей. Поэтому наш выбор ШИМ + MOSFET.

Ключ я взял IRF630. Почему именно этот MOSFET? Да просто у меня их откуда то завелось штук десять. Вот и применяю, так то можно поставить что либо менее габаритное и маломощное. Т.к.

ток тут вряд ли будет больше ампера, а IRF630 способен протащить через себя под 9А. Зато можно будет сделать целый каскад из вентиляторов, подсоединив их к одной крутилке — мощи хватит

Теперь пришло время подумать о том, чем мы будем делать ШИМ.

Сразу напрашивается мысль — микроконтроллером. Взять какой-нибудь Tiny12 и сделать на нем. Мысль я эту отбросил мгновенно.

  1. Тратить такую ценную и дорогую деталь на какой то вентилятор мне западло. Я для микроконтроллера поинтересней задачу найду
  2. Еще софт под это писать, вдвойне западло.
  3. Напряжение питания там 12 вольт, понижать его для питания МК до 5 вольт это вообще уже лениво
  4. IRF630 не откроется от 5 вольт, поэтому тут пришлось бы еще и транзистор ставить, чтобы он подавал высокий потенциал на затвор полевика. Нафиг нафиг.

Остается аналоговая схема. А что, тоже неплохо. Наладки не требует, мы же не высокоточный девайс делаем. Детали тоже минимальные. Надо только прикинуть на чем делать.

Операционные усилители можно отбросить сразу. Дело в том, что у ОУ общего назначения уже после 8-10кГц, как правило, предельное выходное напряжение начинает резко заваливаться, а нам надо полевик дрыгать.

Да еще на сверхзвуковой частоте, чтобы не пищало.

ОУ лишенные такого недостатка стоят столько, что на эти деньги можно с десяток крутейших микроконтроллеров купить. В топку!

Остаются компараторы, они не обладают способностью операционника плавно менять выходное напряжение, могут только сравнивать две напруги и замыкать выходной транзистор по итогам сравнения, но зато делают это быстро и без завала характеристики.

Пошарил по сусекам и компараторов не нашел. Засада! Точнее был LM339, но он был в большом корпусе, а впаивать микросхему больше чем на 8 ног на такую простую задачу мне религия не позволяет. В лабаз тащиться тоже было влом.

Что делать?

И тут я вспомнил про такую замечательную вещь как аналоговый таймер — NE555. Представляет собой своеобразный генератор, где можно комбинацией резисторов и конденсатором задавать частоту, а также длительность импульса и паузы.

Как это работает
Если не вникать глубоко в структуру таймера 555, то несложно. Грубо говоря, таймер следит за напряжением на конденсаторе С1, которое снимает с вывода THR (THRESHOLD — порог). Как только оно достигнет максимума (кондер заряжен), так открывается внутренний транзистор.

Который замыкает вывод DIS (DISCHARGE — разряд) на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю (полный разряд) система перекинется в противоположное состояние — на выходе 1, транзистор закрыт.

Конденсатор начинает снова заряжаться и все повторяется вновь.
Заряд конденсатора С1 идет по пути: «R4->верхнее плечо R1 ->D2«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS. Когда мы крутим переменный резистор R1 то у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе.

Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1.

Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Включение 4

Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.

Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «ноль», и светодиод не горит. Иначе — «единица».

Вообще, лучше, конечно, пользоваться первыми двумя общепринятыми схемами, чтобы не было путаницы.

Еще один важный момент — подключение нагрузки (светодиода) к другому напряжению (как мог, изобразил 24 вольта). Справедливо для любого из ранее изображенных включений.

О нагрузке. В даташите о максимальном токе коллектора сказано, что больше 6-20 мА микросхема не выдаст. То есть включить один светодиод — не проблема, а вот что побольше…

Кусок светодиодной ленты, подключенный прямо к выходу компаратора (по третьей или четвертой схеме, без резистора R3) светил слабо (1 мА). Пришлось поддать напряжения до 12 вольт, и тогда ток коллектора вырос до 14 мА. При подключении ленты напрямую к блоку питания — 32 мА. Таким образом, как ни крути, а максимум, что можно получить конкретно от этой LM-ки — 14 мА.

Вывод — что-то прожорливое есть смысл пускать через транзистор, загнанный в ключевой режим. При этом каскаду с общим эмиттером, инвертирующему сигнал, как нельзя лучше подойдет третья или четвертая схемы включения. Ведь если сигнал инвертировать дважды — получится опять исходный сигнал.Например, на прямом входе компаратора «единица» (по привычной логике — на прямом входе напряжение больше, чем на инвертирующем). Третья схема сделает из нее «ноль» на выходе. А каскад с общим эмиттером, «перевернув» этот «ноль», опять даст «единицу».

Стрелка цепляется к выходу компаратора (R1 — это R3 из предыдущей схемы). R2, возможно, придется подобрать: если он будет слишком маленьким, то транзистор может сгореть, а если слишком большим — не откроется (можно попробовать 4,7 кОм). При подаче «единицы» в базе транзистора должно быть примерно 0,7 В (для кремния). К R3 тоже есть вопросы, но слишком малым и он не должен быть.

Моделирование. Когда на входе «ноль» (а «ноль» третьей и четвертой схемы — это в нормальном включении «единица»), то на выходе — «единица», светодиод работает. С чего начали, к тому и пришли — «единица» опять стала сама собой.

Теперь, когда на входе «единица», то на выходе «ноль». Вот она, знаменитая инверсия каскада с общим эмиттером!

А если включать нагрузку в коллектор транзистора, то «единицы» и «нули» по входу и выходу будут совпадать.В общем, простор для творчества — колоссальный.

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Список ранее опубликованных глав

Перевел Вячеслав Гавриков по заказу АО КОМПЭЛ

Тим Грин, Пит Семиг, Колин Веллс (Texas Instruments)

Перед вами – глава из «Поваренной книги разработчика аналоговой электроники», созданной инженерами компании Texas Instruments (TI). Поваренная книга – сборник рецептов, а данный цикл статей – сборник стандартных схем с операционными усилителями. Каждой схеме посвящена отдельная статья, содержащая пример типового расчета с указанием формул и последовательности действий. Результаты расчетов дополнительно проверяются в программе SPICE-моделирования. Расчеты выполнены для конкретных усилителей из производственной линейки TI. Разработчик может использовать и другие изделия, широкий выбор которых представлен на страницах каталога компании КОМПЭЛ. От читателя требуется понимание базовых принципов работы операционных усилителей. Если же знаний недостаточно, следует вначале ознакомиться с учебными курсами TI Precision Labs (TIPL). Авторы обещают обновлять и дополнять статьи цикла.

Мы публикуем главы Поваренной книги на нашем сайте регулярно – дважды в месяц.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/

Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Фото — УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Фото — Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

Фото — схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Фото — простой компаратор

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото — аналоговый компаратор

Видео: компараторы

Выбираем устройство

Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.

Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате

А лучше превышать для безопасной работы системы.
Напряжение должно быть в допустимых широких диапазонах.
Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
Ещё необходимо обратить внимание на срок службы, размеры, количество входов.

Прибор триак

Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.

Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.

С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

https://youtube.com/watch?v=Fl9Y0TysWps

Принципиальная схема регулятора оборотов мотора

Схема состоит из двух частей: дифференциального усилителя и стабилизатора напряжения. Первая часть занимается измерением температуры и обеспечивает напряжение, пропорциональное температуре, когда она превышает установленный порог. Это напряжение является управляющим для стабилизатора напряжения, выход которого контролирует питание вентиляторов.

Схема регулятора оборотов электродвигателя постоянного тока приведена на рисунке. Основа – компаратор U2 (LM393), работающий в этой конфигурации как обычный операционный усилитель. Первая его часть U2A работает как усилитель дифференциальный, чьи условия работы определяют резисторы R4-R5 (47k) и R6-R7 (220k). Конденсатор C10 (22pF) улучшает стабильность усилителя, а R12 (10k) подтягивает выход компаратора к плюсу питания.

На один из входов дифференциального усилителя подается напряжение, которое образуется через делитель, состоящий из R2 (6,8k), R3 (680 Ом) и PR1 (500 Ом), и фильтруется с помощью C4 (100nF). На второй вход этого усилителя поступает напряжение с датчика температуры, который в данном случае один из разъемов транзистора T1 (BD139), поляризованный небольшим током с помощью R1 (6,8k).

Конденсатор C2 (100nF) был добавлен, чтобы фильтровать напряжение с датчика температуры. Полярность датчика и делителя опорного напряжения задает стабилизатор U1 (78L05) вместе с конденсаторами C1 (1000uF/16V), C3 (100nF) и C5 (47uF/25V), предоставляя стабилизированное напряжение 5 В.

Компаратор U2B работает как классический усилитель ошибки. Он сравнивает напряжение с выхода дифференциального усилителя с выходным напряжением с помощью цепочки R10 (3,3k), R11 (47 Ом) и PR2 (200 Ом). Исполнительным элементом стабилизатора является транзистор T2 (IRF5305), база которого управляется делителем R8 (10k) и R9 (5,1k).

Конденсатор C6 (1uF) и C7 (22pF) и C9 (10nF) улучшают стабильность петли обратной связи. Конденсатор C8 (1000uF/16V) фильтрует выходное напряжение, он имеет значительное влияние на стабильность системы. Разъемом выхода – AR2 (TB2), а разъем питания – AR1 (TB2).

Благодаря применению выходного транзистора с низким сопротивлением в открытом состоянии, схема обладает очень малым падением напряжения – порядка 50 мВ при выходном токе 1 А, что не требует блока питания с более высоким напряжением для управления вентиляторами, работающие на 12 В.

В большинстве случаев в роли U2 можно применить популярный операционный усилитель LM358, правда несколько ухудшив выходные параметры.

LM393. Описание, datasheet, схема включения, аналог

Микросхема LM393 имеет в своем корпусе два независимых компаратора напряжения. Компаратор LM393 может работать, как от однополярного источника питания в широком диапазоне напряжений, так и от двухполярного источника. При использовании двухполярного — разница между потенциалами должна составлять от 2 В до 36 В.

Ток потребления компаратора не зависит от напряжения питания

Необходимо обратить внимание, что данный компаратор имеет выход с открытым коллектором

Ключевая особенность LM393

  • Широкий диапазон напряжения питания: 2…36 В или ±1…±18 В
  • Очень низкий ток потребления (0,45 мА)
  • Низкий входной ток смещения: 20 нА
  • Низкий входной ток смещения: ± 3 нА
  • Низкое входное напряжение смещения: ± 1 мВ тип
  • Низкое выходное напряжение насыщения: 80 мВ
  • TTL, DTL, ECL, MOS, CMOS совместимые выходы
  • Компаратор LM393 доступен в корпусе: DFN8 2х2, MiniSO8, TSSOP8 и SO8