Как собрать из двух магнитов, вечный фонарик с бесплатным электричеством? электричество из магнита и проволоки своими руками

Содержание

Фонарик с «вечной» подзарядкой

Этот миниатюрный прибор окажется полезным не только в «аварийном» случае, но и для тех, кто занимается профилактикой инженерных сетей, обследованием помещений или поздно возвращается с работы домой. Конструкция фонарика примитивна, но оригинальна — с его сборкой справится даже школьник. Однако при этом у него есть собственный индукционный генератор.

1 — диодный мост; 2 — катушка; 3 — магнит; 4 — батарейки 3х1,2 В; 5 — выключатель; 6 — светодиоды

Для работы понадобится:

  1. Толстый маркер (корпус).
  2. Медная проволока Ø 0,15-0,2 мм — около 25 м (можно взять со старой катушки).
  3. Световой элемент — светодиоды (в идеале головка от обычного фонарика).
  4. Батарейки стандарта 4А, ёмкость 250 мА/час (от аккумуляторной «Кроны») — 3 шт.
  5. Выпрямительные диоды типа 1Н4007 (1Н4148) — 4 шт.
  6. Выключатель-тумблер или кнопка.
  7. Медный провод Ø 1 мм, маленький магнит (желательно неодим).
  8. Клеевой пистолет, паяльник.

Ход работы:

1. Разобрать маркер, удалить содержимое, срезать держатель стержня (должна остаться пластиковая трубка).

2. Установить головку фонарика (осветительный элемент) в крышку съёмную колбы.

3. Спаять диоды по схеме.

4. Сгруппировать батарейки смежно таким образом, чтобы их можно было разместить в корпусе маркера (корпусе фонарика). Подключить батарейки последовательно, на спайке.

5. Разметить участок корпуса так, чтобы видеть свободное пространство, не занятое батарейками. Здесь будет устроена индукционная катушка и магнитный генератор.

6. Намотка катушки. Эту операцию следует выполнять, соблюдая следующие правила:

  • Разрыв проволоки недопустим. При разрыве следует перемотать катушку заново.
  • Намотка должна начаться и закончиться в одном месте, не обрывайте проволоку в середине после достижения необходимого количества витков (500 для ферромагнита и 350 для неодима).
  • Качество намотки не имеет решающего значения, но только в данном случае. Главное требования — количество витков и равномерное распределение по корпусу.
  • Зафиксировать катушку на корпусе можно обычным скотчем.

7. Для проверки работоспособности магнитного генератора нужно подпаять концы катушки — один к корпусу светильника, второй — к выводу светодиодов (используйте паяльную кислоту). Затем поместить магниты в корпус и встряхнуть несколько раз. Если лампы рабочие и всё сделано правильно, светодиоды отреагируют на электромагнитные колебания слабыми вспышками. Эти колебания впоследствии будут выпрямляться диодным мостом и преобразовываться в постоянный ток, который будут накапливать батарейки.

8. Установить магниты в отсек генератора и перекрыть его термоклеем или герметиком (чтобы магниты не прилипали к батарейкам).

9. Вывести усики катушки внутрь корпуса и подпаять к диодному мосту, затем мост соединить с аккумуляторами, а аккумуляторы со светильником через ключ. Все соединения производить на пайку согласно схеме.

10. Установить все детали в корпус и сделать защиту катушки (скотч, кожух или термоусадочная лента).

Видео, как сделать вечный фонарик

Такой фонарик будет подзаряжаться, если его потрясти — магниты должны ходить вдоль катушки для образования импульсов. Неодимовые магниты можно найти в DVD, CD приводе или в жёстком диске компьютера. Также они есть в свободной продаже — подходящий вариант NdFeB N33 D4x2 мм стоит около 2-3 руб. (0,02-0,03 у. е.). Остальные детали, если их нет в наличии, обойдутся не более чем в 60 руб. (1 у. е.).

Для реализации магнитной энергии есть специальные генераторы, но широкого распространения они не получили из-за мощного влияния нефтедобывающей и перерабатывающей отраслей. Однако приборы на основе электромагнитной индукции с трудом, но прорываются на рынок и можно приобрести в свободной продаже высокоэффективные индукционные печи и даже котлы отопления. Также технология широко применена в электромобилях, ветряных генераторах и магнитных двигателях.

Счет за электричество – неминуемая статья расходов для любого современного человека. Централизованное электроснабжение постоянно дорожает, но потребление электричества с каждым годом все равно растет. Особенно остро эта проблема стоит для майнеров, ведь, как известно, добыча криптовалюты потребляет значительное количество электроэнергиии, в связи с чем счета на ее оплату могут превышать прибыль от

При таких условиях стоит обратить внимание на то, что практически все природные ресурсы могут быть использованы для преобразования в электричество. Даже в воздухе присутствует статическое электричество, осталось только найти методы им воспользоваться

Будет ли гореть электрическая лампочка, если ее соединить с магнитом?

Если сила магнетизма магнитного поля всегда образует работу электрического тока, то будет ли гореть электрическая лампочка, соединенная с магнитом имеющим обмотку электрического трансформатора повышающего электрическое напряжение?

Если нет, то почему, что не хватает силы магнетизма магнитного поля магнита, и только?

Добавлено через 39 минутЕсли электрический ток всегда совершает работу за счет силы своего магнетизма, то почему эта сила магнетизма не может совершать работу электрического тока?перестала гореть лампочка интернета DSL 2520U У меня модем DSL 2520U. Интернет от домолинка. Перестала гореть лампочка Internet и интернет не.

Задается время суток. Определить, какой цвет светофора будет гореть в это время 1. Задается время суток. Определить, какой цвет светофора будет гореть в это время. 2. Дан номер.

Какую мощность будет потреблять 25 – ваттная лампочка? Какую мощность будет потреблять 25 – ваттная лампочка, рассчитанная на напряжение V1 =120 В, если.

Какова вероятность того,что последняя неисправная лампочка будет обнаружена на седьмом испытании? Имеются две неисправные электрические лампочки и десять исправных.Эти лампочки испытывают одну за.

Делаем магниты на холодильник (и не только) из подручных, бросовых и природных материалов

Магниты на холодильнике радуют глаз и сохраняют на виду наши списки, фотографии, открытки, визитки и купоны. Делать их своими руками для себя или в подарок очень интересно и легко.

Ведь если подумать, то для изготовления магнитных поделок можно использовать почти все, что есть под рукой, достаточно включить фантазию, запастись клеем и мини-магнитами.

В этой статье мы представили 70 вдохновляющих фото-идей, а также 5 пошаговых уроков, как сделать классные магниты на холодильник (и не только) из подручных, природных и даже бросовых материалов.

Общие рекомендации для новичков

  1. Для изготовления магнитов на холодильник вы можете использовать три их вида: ферритовые, неодимовые (супер-магниты) и виниловые (резиновые).

Если вы хотите, чтобы ваши магнитные поделки удерживали лишь легкие и небольшие листы бумаги, визитки и прочее, то можно использовать ферритовые (обычные магниты графитового цвета, которые чаще всего используют для сувенирных изделий) или виниловые. Последний представляет собой гибкий виниловый материал с клеевой основой, который имеет небольшую силу сцепления, зато может резаться на сегменты разных форм и размеров. Пример применения гибкого магнита представлен ниже.

Если же вы хотите, чтобы магнит удерживал вещи потяжелее, то для изготовления поделки нужно использовать неодимовые магниты (супер-магниты), которые имеют в 10 раз большую силу сцепления. Так, например, для изготовления магнитного крючка для поварёшки или разделочной доски понадобится один магнит размером с 1-копеечную монетку. Имейте в виду, что в идеале сила сцепления магнита должна быть в 2 раза больше веса поделки и предмета, который она будет держать.

Кстати, неодимовый магнит в отличие от ферритового с течением времени не теряет магнитных свойств. Ферритовый же через 8-10 лет превращается в бесполезный кусок железа.

  1. Магнитики можно вешать не только на холодильник, но и на любые металлические поверхности, например, на магнитную доску-органайзер, вытяжку или газовую колонку.

В свою очередь, магнитную доску-органайзер можно установить куда угодно, например, на дверцу шкафчика

Смотрите материал по теме: 8 способов декора холодильника

Мастер-класс. 1. Магниты-крючки из веток

На эти крючки-веточки можно повесить ключи, полотенца, поварешки и другие вещи.

Материалы и инструменты:

  • Сухая небольшая, но крепкая ветка с ответвлением;
  • Ручная пила или лобзик;
  • Маленькие неодимовые магниты;
  • Клей;
  • Дрель и сверло, равное диаметру магнитов;
  • Краска акриловая (по желанию).

Инструкция:

  1. При помощи пилы отрежьте ветку так, чтобы она стала похожа на крючок. Затем разрежьте ветку вдоль, чтобы ее задняя сторона получилась плоской как показано ниже на фото слева.

  1. В этой плоской задней части ветки просверлите углубленное отверстие под диаметр вашего магнита.
  2. Приклейте магнит в получившуюся ячейку.

  1. По желанию покрасьте поделку и покройте матовым лаком. Готово!

Мастер-класс 2. Банки для хранения на магнитах

Если у вас есть симпатичные жестяные или стеклянные банки, пустите их в дело, превратив дверцу холодильника или магнитную доску в органайзер.

  • Стеклянные банки с детским питанием отлично подходят для хранения специй на холодильнике или вытяжке.
  • Далее представляем урок, как своими руками сделать магнитные банки для хранения мелочей как на фото ниже.
  • Материалы и инструменты:
  • Небольшие алюминиевые банки (банки как в нашем мастер-классе можно заказать на Алиэкспресс по 300 руб./10 шт.). Заменить жестяные банки можно стеклянными баночками или маленькими пластиковыми контейнерами;
  • Краска желаемого цвета (удобнее использовать краску в спрее) и матовый лак (не обязательно, но желательно для защиты покрытия);
  • Неодимовые пластинчатые магниты (особенно если вы хотите использовать большие банки и хранить в них тяжелые мелочи) или магнитные виниловые самоклеящиеся листы толщиной 0,6 мм;
  • Суперклей «Момент» (понадобится в случае, если вы используете неодимовые магниты).

Инструкция:

  1. Убедитесь, что подготовленные банки чистые и сухие. Покрасьте их, а также их крышки в 2-3 слоя, дав каждому слою хорошенько просохнуть. Далее покройте банки лаком, если он есть.

Если вы используете банки со стеклянной вставкой на крышке, то перед покраской ее нужно извлечь или заклеить малярным скотчем.

  1. Вырежьте из магнитного листа круги, их диаметр должен быть чуть меньше диаметра банок. Если же вы используете неодимовые магниты, то приклейте их на суперклей.
  1. Приклейте вырезанные круги на дно банки, убрав защитную подложку.
  1. При желании крышки банок можно дополнительно задекорировать. Например так, как показано на фото ниже.

Принцип работы

Работа генератора заключается в гибридной в системе. Переменный ток получается после преобразования кинетической энергии. Ротор вращается благодаря силе магнитного поля, которое исходит от торцов электромагнитов. Таким образом, магнитные колебания позволяют создать электрический импульс. Самая простая конструкция содержит в себе:

  1. Генератор. Это цилиндрическая ёмкость, которая обязательно должна герметично закрываться. Внутри возникает электромагнитное поле, благодаря направленному воздействию катушек.
  2. Конвектор-преобразователь. Продуцирует электроэнергию из магнитных импульсов. На выходе получается переменный ток.
  3. Аккумуляторы. Необходимы для накапливания заряда. Благодаря им можно пользоваться электричеством в любое время.

Главным элементом в конструкции является многополюсный генератор прямого вращения. Снаружи располагаются магниты. Их количество зависит от необходимой мощности. Минимальный коэффициент полезного действия такого устройства составляет 90%. Из генераторов можно создать электрические сети, соединяя несколько устройств между собой. Это выгодно, если мощность аппарата составляет, например, 5 киловатт, а требуется мощность в 10 киловатт.

https://youtube.com/watch?v=ZBtpxqhnI6Q

Как получить электричество из магнита

Для того, чтобы понять как работают подобные устройства, необходимо точно знать, чем они отличаются от обычных электрических двигателей. Все электродвигатели, хотя и пользуются магнитными свойствами материалов, движение свое осуществляют исключительно под действием тока.

Для работы настоящего магнитного двигателя используется только лишь постоянная энергия магнитов, с помощью которой выполняются все необходимые перемещения. Основной проблемой этих устройств является склонность магнитов к статическому равновесию. Поэтому на первый план выходит создание переменного притяжения, с использованием физических свойств магнитов или механических приспособлений в самом двигателе.

Принцип действия двигателя на постоянных магнитах основан на крутящем моменте отталкивающих сил. Происходит действие одноименных магнитных полей постоянных магнитов, расположенных в статоре и роторе. Их движение осуществляется во встречном направлении по отношению друг к другу. Для того, чтобы решить проблему притяжения был использован медный проводник с пропущенным по нему электрическим током. Такой проводник начинает притягиваться к магниту, однако при отсутствии тока, притяжение прекращается. В результате, обеспечивается цикличное притяжение и отталкивание деталей статора и ротора.

Двигатель батарейка магнит скрепка. Сердце на батарейке – простейший электромотор. Как и почему это работает

А что вы делаете, когда отключают электричество в темное время суток? Скорее всего, зажигаете свечи и проводите вечер в ожидании подачи электроэнергии. А можно провести это время с пользой. Например, осветить комнату при помощи обычного магнита и проволоки, который позволит работать лампе без электричества. Или сделать мотор, который сможет работать автономно.

1. Мобильный обогреватель для рук

Люди делятся на два типа. Одни даже в мороз чувствуют себя комфортно. Другие мерзнут в середине июля. Если проблема холодных рук вам знакома не понаслышке, держите под рукой, а вернее – в руках, мини-обогреватель из батареек. Оберните батарейку фольгой, закрепив ее на полюсах-контактах. Зажмите полюса – и наслаждайтесь теплом. Перед тем как взять мини-обогреватели с собой, убедитесь, что батарейки заряжены.

2. Заряженная или севшая – как узнать?

Но как узнать, заряжена ли батарейка без приборов? Уроните батарейку на стол минусовой стороной с небольшой высоты (2-3 см). Разряженная звонко отскочит и упадет. Заряженная, вероятнее всего, приземлится на полюс с глухим звуком.

3. Электромагнит своими руками

С помощью простых предметов – батарейки, изолированной медной проволоки (не менее 1,5 метров) и большого гвоздя/болта, можно сделать мощный электромагнит. Намотайте проволоку на гвоздь от одного конца к другому. У каждого конца гвоздя должны остаться «хвостики» для подключения к батарейке. Как только вы присоедините концы проволоки к батарейке, конструкция превратится в электромагнит. Ищите или подбирайте им любые металлические предметы. После рассоединения элементов электромагнит теряет силу.

4. Огонь из батарейки: «тюремная зажигалка»

Один из любимых трюков лайфхакеров (и не только) – добыча огня с помощью батарейки. Понадобится полоска фольги с бумажным основанием (например, от жевательной резинки) шириной 6-7 мм у концов с заужением до 2 мм по центру. Приложите концы полоски к полюсам батарейки и поднесите устройство к бумаге, которая тотчас воспламенится.

5. AAA вместо AA

Нужна AA, а под рукой лишь AAA? Проблема решается просто – кусочком фольги, который удержит батарейку в разъеме и приведет устройство в рабочее состояние.

6. Вскрытие батарейки «Крона»

Алкалиновые батарейки «Крона» содержат 6 батареек типа АААА с напряжением в 1,5 В, которые легко превращаются в батарейки AAA с помощью вышеуказанного лайфхака.

7. Зачем мять разряженные батарейки?

Копейка рубль бережет. Не выбрасывайте севшие батарейки. Если разряженную батарейку помять, например, зубами или плоскогубцами, она обретет импульс для второй жизни. Кстати, сильно мятая батарейка может протечь и испортить девайс.

9. Подарок будущим поколениям

Батарейка, выброшенная в мусорное ведро, нанесет природе серьезный урон. Оказавшись на улице, она загрязнит вредными компонентами 20 квадратных метров земли или 400 литров воды. Складывайте отработанные батарейки в пластиковую бутылку, а пока она заполняется – найдите ближайший пункт сбора батареек, которых в России, увы, немного.

10. Ответственность перед природой с Ikea

Сеть магазинов Ikea возобновила прием отработанных батареек и ртутьсодержащих ламп. Никакой платы за сбор и последующую утилизацию батареек магазин не берет. Ищите спецконтейнеры у выхода из магазина!

На днях показывал ребенку как работает электромотор. Вспомнил эксперимент по физике из школы.

https://youtube.com/watch?v=Gn9AaqoGDmo

Исходные материалы:

  1. Батарейка АА
  2. Эмалированный провод 0.5 мм
  3. Магнит
  4. Две скрепки, размером примерно с батарейку
  5. Канцелярский скотч
  6. Пластилин

Загибаем часть скрепки.

Наматываем катушку из эмалированного провода. Делаем 6-7 витков. Концы провода фиксируем узелками. Затем зачищаем. Один конец полностью очищаем от изоляции, а другой только с одной стороны. (На фото правый конец зачищен снизу)

Фиксируем скрепки на батарейке скотчем. Устанавливаем магнит. Крепим всю конструкцию на столе при помощи пластилина. Далее надо правильно поставить катушку. Когда катушка установлена, зачищенные концы должны касаться скрепки. В катушке возникает магнитное поле, у нас получается электромагнит.

Полюса постоянного магнита и катушки должны быть одинаковыми, то есть они должны отталкиваться. Сила отталкивания поворачивает катушку, один из концов теряет контакт и магнитное поле исчезает. По инерции катушка поворачивается, снова появляется контакт и цикл повторяется. Если магниты притягиваются, мотор крутится не будет.

По этому один из магнитов надо будет перевернуть.

Все из ничего

Исследования видов «зеленой энергии» в последнее время ведутся все интенсивней, так как это является путем в будущее. На нашей планете изначально есть все для жизни человечества. Нужно только уметь это взять и использовать на благо. Многие ученые и просто любители создают такие устройства? как генератор свободной энергии. Своими руками, следуя законам физики и собственной логике, они делают то, что принесет пользу всему человечеству.

Так о каких явлениях идет речь? Вот несколько из них:

  • статическое или радиантное природное электричество;
  • использование постоянных и неодимовых магнитов;
  • получение тепла от механических нагревателей;
  • преобразование энергии земли и космического излучения;
  • имплозионные вихревые двигатели;
  • тепловые солнечные насосы.

В каждой из этих технологий для высвобождения большего объема энергии используется минимальный начальный импульс.

Как сделать генератор свободной энергии своими руками? Для этого нужно иметь сильное желание изменить свою жизнь, много терпения, старание, немного знаний и, конечно, необходимые инструменты и комплектующие.

Генератор из вентилятора на магнитах

Индукционная катушка имеет одно почти чудесное свойство — при вращении вокруг неё магнита возникает электрический импульс. Это значит, что весь прибор имеет обратное действие — если заставить пропеллер крутиться посторонними силами, мы сможем вырабатывать электроэнергию. Но как раскрутить турель с пропеллером?

Ответ очевиден — всё тем же магнитным полем. Для этого на лопастях размещаем маленькие (10х10 мм) магниты и закрепляем их клеем или скотчем. Чем больше магнитов — тем сильнее импульс. Для вращения пропеллера будет достаточно обычных ферритовых магнитов. К бывшим проводам электропитания подключаем светодиод и даём импульс турели.

Генератор из кулера и магнитов — видеоинструкция

Усовершенствовать такой прибор можно, разместив дополнительно одну или несколько магнитных шин из пропеллеров на рамке кулера. Также можно включить в сеть диодные мосты и конденсаторы (перед лампочкой) — это позволит выпрямить ток и стабилизировать импульсы, получая ровный постоянный свет.

Свойства неодима крайне интересны — его малый вес и мощная энергетика дают эффект, заметный даже на поделках (экспериментальных приборах) бытового уровня. Движение становится возможным благодаря эффективной конструкции подшипниковой турели кулеров и приводов — сила трения минимальная. Отношение массы и энергии неодима обеспечивает лёгкость движения, что даёт широкое поле для экспериментов в домашних условиях.

Свободная энергия на видео — магнитный двигатель

Область применения магнитных вентиляторов обусловлена их автономностью. В первую очередь это автотранспорт, поезда, сторожки, отдалённые стоянки. Ещё одно неоспоримое достоинство — бесшумность — делает его удобным в доме. Можно установить такой прибор в качестве вспомогательного в системе естественной вентиляции (например, в санузел). Любое место, где необходим постоянный небольшой поток воздуха, пригодно для этого вентилятора.

Общие принципы действия

Последовательность функционирования такого БТГ заключается в следующем:

Исходная мощность от питающей батареи (например, солнечной) накапливается высокоемкостным конденсатором.

По достижении заданной разности потенциалов конденсатор разряжается, и передает импульс на первичную обмотку трансформатора. В качестве промежуточного звена используется емкостной каскад из двух параллельно соединенных диодов и конденсатора, который сглаживает неизбежные пульсации напряжения.

Мощность воспринимается катушкой индуктивности, которая подключена к первичной обмотке трансформатора. Вторичная обмотка представляет собой последовательно соединенные колебательный контур и ещё одну катушка индуктивности, параллельно с которой работает диодный мост, Назначение последнего – ограничить пиковые значения мощности, которые теоретически могут достигать бесконечности.

Часть первичной обмотки трансформатора резервируется под нагрузку, а часть подсоединяется к земле. Это необходимо для ограничения вырабатываемой мощности и продления срока службы элементов схемы.

Во избежание самопроизвольного импульсного разряда все остальные элементы схемы – первичный колебательный контур, а также выводы первичной и вторичной обмоток трансформатора заземляются.

Таким образом, потребляемая схемой энергия является постоянной и достаточной для питания нагрузки –системы локального освещения, а также приводов каких-либо небольших приборов или устройств. Вместе с тем, ввиду импульсности выходного напряжения, БТГ на трансформаторе нельзя применять для питания двигателей постоянного тока.

Важно! Следует учесть, что любой внешний источник энергии – солнечная батарея, магниты и пр. – не отличается регулярностью мощности. Поэтому, несмотря на отсутствие механических систем передачи, часть энергии будет рассеиваться в контурах и теряться из-за электрического сопротивления проводов.

Поэтому, несмотря на отсутствие механических систем передачи, часть энергии будет рассеиваться в контурах и теряться из-за электрического сопротивления проводов.

Машина для генерирования свободной энергии, изобретенная Джоном Бедини, состоит из следующих узлов:

  • Электромагнитной двухслойной катушки.
  • Сердечника из скрепленных вместе сварочных прутков.
  • Пары магнитов.
  • Ротора, располагаемого над сердечником.
  • Изолирующей основы – подставки из дерева или плексигласа.
  • Диодного моста с транзистором и сглаживающим конденсатором.

Нагрузки, один вывод которой соединяется с вторичной цепью, а второй – с питающей внешней батареей. Батарею можно подключить к усилителю, тогда мощность установки возрастет.

Двигатель Бедини работает так. Двухслойная катушка представляет собой обычный СЕ-генератор на трансформаторе с кз витком. При этом внешний провод получает питание от батареи, а внутренний передает мощность во вторичную цепь, формируя при этом в массивном сердечнике электромагнитное поле (оно тем сильнее, чем массивнее сердечник, и чем больше витков в первичной обмотке). Вращаясь в переменном магнитном поле, этот сердечник образует ротор двигателя. Корпус транзистора является коллектором, один из полюсов которого подключается к излучателю. Второй полюс подсоединяется ко вторичной обмотке трансформатора. При достаточно надежной изоляции обмоток вся энергия, генерируемая вращающимся ротором, будет направляться в нагрузку.

При сборке схемы двигателя Бедини следует придерживаться следующих обязательных правил:

Позаботиться о надежном креплении всех деталей составного сердечника первичной обмотки, поскольку при вращении ротора часть прутков может рассоединиться между собой, и существенно ослабить магнитное поле первичной обмотки. Рекомендуется склеивать стержни суперстойким клеем;

Для контроля параметров вырабатываемой мощности рекомендуется использовать неоновую следящую лампу, которая подсоединяется параллельно излучателю и коллектору. При включении схемы эта лампа не должна загораться (пороговое напряжение 80…100 В); в противном случае ток во вторичной обмотке слишком велик, что приведет к порче транзистора.

Батареи питания должны быть полностью исправными, в заряженном состоянии и не иметь утечки на корпус, иначе они могут взорваться.

Добыча из Земли

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.

От заземления

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.

Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи

(От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется)

Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).

Другие способы

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.

Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.

Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

https://youtube.com/watch?v=yXOVJYvH8j4

Последователи Николы Теслы и их генераторы

Посеянные Теслой семена невероятных изобретений породили в умах соискателей неутолимую жажду воплотить в реальность фантастические идеи создания вечного двигателя и отправить механические генераторы на пыльную полку истории. Наиболее известные изобретатели использовали принципы изложенные Николой Тесла в своих устройствах. Рассмотрим наиболее популярные из них.

Лестер Хендершот

Хендершот развивал теорию о возможности использования магнитного поля Земли для генерации электроэнергии. Первые модели Лестер представил еще в 1930-х годах, но они так и не были востребованы его современниками. Конструктивно генератор Хендершота состоит из двух катушек со встречной намоткой, двух трансформаторов, конденсаторов и подвижного соленоида.

общий вид

Работа такого генератора свободной энергии возможна только при его строгой ориентации с севера на юг, поэтому для настройки работы обязательно используется компас. Намотка катушек выполняется на деревянных основаниях с разнонаправленной намоткой, чтобы снизить эффект взаимной индукции (при наведении в них ЭДС, в обратную сторону ЭДС наводится не будет). Помимо этого катушки должны настраиваться резонансным контуром.

Джон Бедини

Свой генератор свободной энергии Бедини представил в 1984 году, особенностью запатентованного устройства был энерджайзер – устройство с постоянным вращающимся моментом, которое не теряет оборотов. Такой эффект был достигнут за счет установки на диск нескольких постоянных магнитов, которые при взаимодействии с электромагнитной катушкой создают в ней импульсы и отталкиваются от ферромагнитного основания. Благодаря чему генератор свободной энергии получал эффект самозапитки.

Более поздние генераторы Бедини стали известны за счет одного школьного эксперимента. Модель оказалась значительно проще и не представляла собой чего-то грандиозного, но она смогла выполнять функции генератора свободного электричества порядка 9 дней без помощи извне.

принципиальная схема

Посмотрите на рисунок 4, здесь приведена принципиальная схема генератора свободной энергии того самого школьного проекта. В ней используются следующие элементы:

  • вращающийся диск с несколькими постоянными магнитами (энерджайзер);
  • катушка с ферромагнитным основанием и двумя обмотками;
  • аккумулятор (в данном примере он был заменен на батарейку 9В);
  • блок управления из транзистора (Т), резистора (Р) и диода (Д);
  • токосъем организован с дополнительной катушки, питающей светодиод, но можно производить питание и от цепи аккумулятора.

С началом вращения постоянные магниты создают магнитное возбуждение в сердечнике катушки, которое наводит ЭДС в обмотках выходных катушек. За счет направления витков в пусковой обмотке ток начинает протекать, как показано на рисунке ниже через пусковую обмотку, резистор и диод.

Когда магнит находится непосредственно над соленоидом, сердечник насыщается и запасенной энергии становится достаточно для открытия транзистора Т. При открытии транзистора, ток начинает протекать и в рабочей обмотке, осуществляющей подзаряд аккумулятора.

Энергии на этом этапе становится достаточно для намагничивания ферромагнитного сердечника от рабочей обмотки, и он получает одноименный полюс с находящимся над ним магнитом. Благодаря магнитному полюсу в сердечнике, магнит на вращающемся колесе отталкивается от этого полюса и ускоряет дальнейшее движение энерджайзера. С ускорением движения импульсы в обмотках возникают все чаще, и светодиод с мигающего режима переходит в режим постоянного свечения.

Увы, такой генератор свободной энергии не является вечным двигателем, на практике он позволил системе работать в десятки раз дольше, чем она смогла бы функционировать на одной батарейке, но со временем все равно останавливается.

Тариель Капанадзе

Капанадзе разрабатывал модель своего генератора свободной энергии в 80 – 90-х годах прошлого века. Механическое устройство основывалось на работе усовершенствованной катушки Тесла, как утверждал сам автор, компактный генератор мог питать потребители мощностью в 5 кВт. В 2000-х генератор Капанадзе промышленных масштабов на 100 кВт попытались построить в Турции, по техническим характеристикам ему для пуска и работы требовалось всего 2 кВт.

На рисунке выше приведена принципиальная схема генератора свободной энергии, но основные параметры схемы остаются коммерческой тайной.