Назначение электрической лампы
Электрические лампы можно разделить на несколько видов по применению – для общественного, технического и специального использования.
Основное общественное применение – обеспечивать любого человека, животных и птиц искусственным светом в темное время суток или в темном месте помещения.
Используя свет, люди на несколько часов продлевают свою суточную активность. Это могут быть рабочие и учебные процессы, домашние дела. Улучшается безопасность на дорогах, возможность оказывать в вечернее и ночное время медицинскую помощь и мн.др.
Лампы активно применяются на животноводческих фермах и птицефабриках, для выращивания растений в тепличных комплексах. Их подсвечивают светом определенного спектра и величины светового потока. Для разведения рыбы тоже нужен свет с особым спектральным составом.
Реализован обогрев домашних животных.
Техническое назначение. В производстве для технологических целей используют устройства, дающие видимый и невидимый свет. Примеры:
для точной и важной работы человеку требуется высокий уровень освещенности рабочего места;
ИК – инфракрасное излучение используют в промышленности, например, для бесконтактного нагрева деталей конструкций или в климатической технике для обогрева человека, работающего на открытом морозном воздухе, в военной технике и охоте – ночные прицелы для оружия, приборы ночного видения и мн.др.;
УФ-излучение применяют в стоматологии для быстрого отвердения пломб, при изготовлении зубных протезов и т.п., в медицине и санитарии – для дезинфекции помещений, инструмента, одежды, поверхностей мебели, воздуха, воды, лекарственных препаратов и пр.
Из чего состоит вольфрамовая лампочка?
https://youtube.com/watch?v=ywXX-DggaAM
Конструкция лампы накаливания с вольфрамовой нитью очень проста. Она состоит из:
- колбы, т. е. самой стеклянной сферы, либо вакуумированной, либо наполненной газом;
- тела накала (нить накаливания) – спирали из сплава вольфрама;
- двух электродов, по которым на спираль подается напряжение;
- крючков – держателей вольфрамовой нити, выполненных из молибдена;
- ножки лампочки;
- внешнего звена токоввода, служащего предохранителем;
- корпуса цоколя;
- стеклянного изолятора цоколя;
- контакта донышка цоколя.
Принцип работы лампы накаливания также несложен. Свет вырабатывается по причине того, что вольфрамовая нить нагревается от подаваемого на нее напряжения. Подобное свечение, хоть и в более малых объемах, можно увидеть при работе электрической плитки с открытым нагревательным элементом из нихрома. Свет от спирали выделяется очень слабый, но на этом примере становится ясно, как работает лампа накаливания.
Кроме привычной формы, эти световые приборы могут быть и декоративными, в виде свечи, капли, цилиндра или шара. Так как свет от вольфрама всегда одного цвета, производители выпускают такие осветительные приборы с различными, иногда окрашенными стеклами.
Интересны в работе лампочки с нитями накаливания с зеркальным покрытием. Принцип действия лампы накаливания можно сравнить с точечными светильниками, так как освещают они направленно определенную площадь.
Разновидности форм ламп накаливания
Достоинства
Конечно, основные преимущества ламп накаливания – это минимальная сложность при их изготовлении. Отсюда, естественно, и низкая цена, ведь на сегодняшний день более простого электрического прибора и представить нельзя. Та же история и с включением такого элемента в сеть. Для этого не нужно устанавливать какое-то дополнительное оборудование, достаточно простейшего патрона.
В некоторых случаях даже при его отсутствии люди подключают лампы накаливания, на скорую руку соорудив патрон из дерева, пластика, либо вовсе соединяя лампу с проводом при помощи изоляционной ленты. Конечно, такие подключения в форс-мажорных обстоятельствах имеют право на существование, но они небезопасны в смысле пожарной и электрозащиты (необходимо следить, чтобы основание не нагрелось).
Также лампочки с нитью накаливания больших мощностей (150 Вт) очень широко применяются в освещении теплиц. Ведь помимо того, что они дают свет, в результате накаливания вольфрамовой нити лампы сильно нагреваются. К тому же освещение от них наиболее близко к солнечному свету, современная лампочка на светодиодах или люминесцентная энергосберегающая этим похвастаться не могут. По этой же причине лампа накаливания имеет преимущество и в вопросе влияния на зрение человека.
Недостатки
Вольфрамовая нить
К недостаткам ламп накаливания можно отнести недолговечность работы таких приборов, это напрямую зависит от такого параметра, как напряжение в сети. Если повысить ток, то спираль начнет быстрее изнашиваться, что и приведет к перегоранию в самом тонком месте. Ну а если же понизить напряжение, то освещение станет намного слабее, хотя, конечно, это увеличит срок службы лампы.
К основным недостаткам ламп накаливания можно также отнести и негативное действие на нить накала резких скачков напряжения. Но от этого недостатка можно избавиться путем установки вводного стабилизатора. Конечно, остается вопрос с включением освещения. Ведь в момент подачи напряжения нить накала холодная, а значит, сопротивление ее ниже. Решается эта проблема установкой простейшего поворотного диммера. Тогда с поворотом рукоятки нить будет накаливаться плавнее, (т. е. будет отсутствовать краткая резкая подача напряжения), а значит и прослужит она много дольше.
Но все же главным минусом этих приборов, конечно же, можно считать их низкий КПД, а именно то, что работающая лампа расходует подавляющую части энергии на тепло, в результате чего начинает сильно нагреваться. Эти потери составляют до 95%, но такой уж алгоритм работы вольфрамовых лампочек. Так что при приобретении этого светового прибора следует учитывать все преимущества и недостатки лампы накаливания.
Преимущества и недостатки
Лампы накаливания остаются одним из самых распространенных источников света в наши дни. Причинами популярности этих изделий являются:
- Простота крупносерийного производства, которое налажено и отработано за много лет работы.
- Невысокая себестоимость.
- Практически мгновенный разогрев до рабочих температур без применения специальной электроники (пусковых реле и т. д.).
- Нечувствительность к скачкам напряжения в сети (кроме перепадов на большую величину).
- Отсутствие в конструкции материалов, загрязняющих окружающую среду.
- Возможность работы при постоянном и переменном токе любой частоты.
- Отсутствует полярность при подключении цоколя.
- Отсутствие пульсаций света, связанных с частотой напряжения.
- Легкость регулирования степени накала лампы.
- Широкий диапазон температур работоспособности.
- Возможность изготовления ламп под любое напряжение и мощность.
Но наряду с достоинствами имеются и недостатки, которые и привели к появлению новых типов ламп.
К минусам лампы накаливания относятся:
- Невысокая световая отдача при высоком энергопотреблении.
- Малый срок службы.
- Резкое увеличение тока в цепи в момент подачи напряжения на нить. При этом ток возрастает в 8…10 раз, нагружая электрическую проводку и контактные соединения.
- Хрупкая колба, очень чувствительная к ударам и вибрации.
- Изменение интенсивности освещения от напряжения. Вместе с этим меняется и срок службы, который сильно сокращается при высоких напряжениях.
- Пожароопасность из-за нагрева колбы и патрона. Самые слабые лампы с мощностью до 25 Вт способны нагреться до 100 градусов. Самые мощные образцы ламп прогреваются до 310…330 градусов. В ходе проведенных экспериментов выяснилось, что для воспламенения соломы от контакта с лампой в 60…75 Вт потребуется не менее часа времени.
- Нагрев лампы вызывает охрупчивание материала патрона, который просто рассыпается при попытке выкрутить цоколь лампы.
В связи с этими недостатками идет поэтапное ограничение мощности ламп накаливания, доступных к продаже. В Российской Федерации с 2013 года официально запрещена продажа ламп накаливания с мощностью 100 Вт и более. Однако имеющиеся в продаже лампы с заявленной мощностью 95…97 ватт по факту являются обычными «сотками». Запрет на продажу более мощных изделий обходится с помощью изменения названия на «теплоизлучатель» или «нагревательный прибор». Под таким обозначением доступны лампы с мощностью от 150 до 300 Вт.
Загрузка …
Строение
Обычная лампа состоит из следующих конструктивных элементов:
- колба;
- вакуум или инертный газ, закачиваемый внутрь нее;
- нить накала;
- электроды — выводы тока;
- крючки, необходимые для удерживания нити накала;
- ножка;
- предохранитель;
- цоколь, состоящий из корпуса, изолятора и контакта на донышке.
Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.
Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение — защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.
Колба
Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.
Газовая среда
Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.
В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.
Нить накала
По форме нить накаливания может быть разной — выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже — ленточные проводники.
Ответы на частые вопросы
Покупатели часто задают интересующие их вопросы. Это связано с отсутствием полной информации на упаковке.
Срок службы, стоимость
На лампу накаливания влияет множество факторов, которые способствуют сокращению ее срока службы.
За последнее время качество производимых лампочек упало. Часто дефект заметен сразу. Поэтому большинство покупателей перешли на покупку товара от иностранных производителей.
Часто снижение времени работы совершается из-за высокого напряжения в сети. При этом происходит перегрев нити накаливания, она уменьшается в толщине, колба начинает темнеть. Происходит разрыв спирали. При отклонении величины напряжения всего на один процент, срок службы лампы сокращается на 14 процентов.
Стоимость лампочки зависит от вида, мощности, производителя. Она колеблется от 7 рублей до 100 рублей (для домашнего потребления).
Как увеличить срок службы
Существует несколько способов, увеличивающих срок службы лампочки:
- Установка диммера. Это простой прибор может продлить срок эксплуатации в несколько раз. Для этого после подключения регулируется процент освещения. При освещении кладовых, подъездов и пр. достаточно выставить работоспособность лампы на 75 процентов.
- Так как часто выход из строя обусловлен скачками напряжения, то достаточно установить стабилизатор.
Какой газ в лампе
В колбах изделия не может содержаться воздух или любой газ. Там должен быть только инертный газ (ксенон, криптон, аргон). Это связано с тем, что температура спирали прогревается больше 2000 градусов.
При таких температурах вольфрамовая нить будет реагировать со всеми газами, кроме инертных. Гелий и неон дорого стоят, поэтому их не используют.
Температура
Световая температура зависит от вида закаченного газа. Так, без газовая вакуумная среда способствует прогреванию до 2700 К. При этом излучается теплый белый свет. При прогревании до 4200 излучается естественный белый свет. При закачивании ксенона, галогена криптона температура прогревания от 4000 до 6400 К. При этом излучается холодный белый свет.
Из-за чего рвется спираль
Вольфрамовая нить очень тонкая и хрупкая. Ее обрыв случается из-за уменьшения диаметра, по причине испарения материала при воздействии высокой температуры. Также часто нить обрывается при механическом воздействии – встряхивании.
Световой поток
Назначение светового потока – освещение. Создается преобразованием тепловой энергии. Единицей измерения считается Люмен (Лм). Увеличение потока зависит от мощности лампы
Лампы накаливания одинаковой мощности излучают разный световой поток. Чем выше напряжение, тем выше значение светового потока.
Сколько потребляет
Мощность 60 Вт — энергопотребление составит 60 Вт или 0,06 киловатт за 1 час
Мощность 95 Вт — потребляет электричества 95 Вт 0,095 киловатт за 1 час
Мощность 100 Вт — израсходует 100 или 0,1 киловатт Вт электроэнергии за 1 час.
Советуем посмотреть видео:
https://youtube.com/watch?v=cVWRiIz3Nz0
КПД и долговечность
Влияние напряжения на срок службы лампочки
Разбирая, как устроена лампа накаливания, важно понять коэффициент ее полезного действия. При световой температуре 3400 Кельвинов КПД элемента составляет 15%
Имеется в виду отношение потребляемой мощности к видимому человеческим глазом световому излучению. При температуре 2700 К (средняя нормальная для обычной бытовой лампы) коэффициент полезного действия равен всего 5%.
Чем выше температура накала, тем большим будет КПД. Но при этом срок службы изделия снижается. К примеру, если повысить напряжение на 20%, яркость освещения станет сильнее – повысится КПД лампочки, однако срок эксплуатации сократится на 90-95%. Соответственно, снижение напряжения приводит к уменьшению коэффициента полезного действия изделия и увеличению срока его эксплуатации.
Современные разновидности ламп накаливания
Множество разновидностей электрических ламп состоит из определенных однотипных частей. Они различаются формой и размерами. На металлическом или стеклянном штенгеле внутри колбы закреплено тело накала (то есть сделанная из вольфрама спираль) с помощью держателей, выполненных из молибденовой проволоки. К концам вводов прикреплены концы спирали. Для того чтобы создать вакуумноплотное соединение с лопаткой, выполненной из стекла, средняя часть вводов выполняется из молибдена или платинита. Колба лампы во время вакуумной обработки наполняется инертным газом. Затем штенгель заваривается и образуется носик. Лампа для крепления в патроне и защиты носика снабжается цоколем. Он прикрепляется цоколевочной мастикой к колбе.
Преимущества и недостатки.
Достоинств у лампы накаливания больше, чем недостатков.
Плюсы
- Низкая цена осветительного прибора. Дешевле пока не производят.
- Небольшой размер, эргономичная форма.
- Низкая чувствительность к перепадам напряжения.
- Моментальное свечение при включении в сеть.
- Не вредно для глаз: мерцание человеческим глазом не фиксируется.
- Возможность использования димеров – регуляторов яркости.
- Спектр света максимально близок к естественному солнечному освещению.
- Свечение не искажает цвета предметов.
- Постоянный спектр излучения.
- Надежность при работе в условиях, отличающихся от нормальных: низкие или высокие температуры, конденсат в атмосфере.
- Широчайший диапазон рабочих напряжений.
- Легкая и безопасная утилизация.
- Простота электрической схемы. Лампа подключается напрямую к сети без дополнительных регулирующих приборов.
- Устойчивость к ионизирующей радиации и электромагнитным импульсам.
- Не создает помех для радиочастот.
- Не гудит при работе.
- Может работать и от переменного, и от постоянного тока; не зависит от полярности.
- Невысокий уровень ультрафиолетового излучения.
Минусы
- Маленький срок службы.
- Невысокая световая отдача, которая зависит от напряжения.
- Низкий коэффициент полезного действия: не более 5%.
- Пожароопасность из-за сильного теплового нагрева колбы.
- Хрупкость стеклянной колбы.
- Возможность взрыва колбы.
- Высокое потребление электроэнергии по сравнению с другими типами ламп.
Этапы развития
На вопрос, кто изобрел лампу накаливания, трудно ответить однозначно, так как в создании этого необходимого прибора участвовало большое количество ученых. В разное время и на различных этапах свои знания, труды и умения приложили многие ученые умы:
- Павел Яблочков;
- Жерар Деларю;
- Томас Эдисон;
- Девид Кулидж;
- Александр Лодынин;
- Генрих Гебель.
Жерар Деларю и Генрих Гебель
Французский ученый впервые попытался создать аналог современной лампочки еще в 1820 году. В качестве нити накала использовали платиновую проволоку, способную отлично нагреваться и ярко светить.
Немецкий исследователь Генрих Гебель представил собственное изобретение в 1854 году. В основе создания электрической лампочки лежали бамбук и сосуд с откаченным воздухом. В сосуд помещалась бамбуковая нить, служащая в качестве лампы накаливания.
https://youtube.com/watch?v=-UDNy1q8OQM
Именно Гебель считается первым человеком, который изобрел электролампочку, используемую для освещения. Ученый впервые сумел догадаться, что вакуумное пространство позволит лампе накаливания гореть дольше. Благодаря использованию вакуума время работы прибора удалось продлить на несколько часов. Чтобы создать полностью безвоздушное пространство, ученому потребовались годы.
Русский ученый Александр Лодынин
Несмотря на предыдущие опыты, первым изобретателем лампочки считается русский ученый Александр Лодынин. Именно он реализовал мечту человечества о постоянном источнике освещения. Свое изобретение российский инженер впервые представил в 1872 году, а через год на петербургских улицах зажглись первые лампочки Лодынина.
Этот источник освещения мог работать до получаса, и для того времени это был прогресс. Если выкачать воздух, лампа продолжала работать. То есть это был первый источник освещения, работающий в постоянном режиме.
Лодынину был вручен патент на лампу с угольной нитью накала. Впоследствии ученый проводил опыты по использованию для стержня различных тугоплавких материалов. Он первым предложил применить для этих целей вольфрам, а также откачивать воздух из лампочки, наполняя ее инертным газом.
https://youtube.com/watch?v=TgFLQPqyonE
Изобретатель Павел Яблочков
Еще одному русскому изобретателю — Павлу Яблочкову удалось продлить работу электрических ламп до полутора часов. Павел Николаевич, посвятивший всю свою жизнь электротехнике, сумел создать не только первую лампочку, но и стал «отцом» электрической свечи. Благодаря этому появилась возможность освещать города по ночам.
Электрическое изобретение Яблочкова имело невысокую стоимость и могло освещать пространство в течение полутора часов. После сгорания лампу заменяли новой. Эта обязанность лежала на дворниках. Позднее появились фонари с автоматической заменой свечи.
Новизна изобретения Яблочкова заключалась в том, что в его лампах находилась каолиновая нить накала, не требовавшая наличия вакуума для продолжительного горения. При этом устройство русского электротехника требовало предварительного разогрева проводника, например, при помощи спички.
Американец Томас Эдисон
Когда говорят об изобретателе, создавшем лампу накаливания, всегда упоминают Томаса Эдисона. Но мало кто знает, что американец всего лишь усовершенствовал изобретенный до него прибор, вовремя оформил на него патент и запустил массовое производство. Поэтому Эдисон в большей степени бизнесмен, чем ученый, а первым изобрел лампочку россиянин Александр Лодынин.
В Америке об изобретении Лодынина стало известно благодаря морскому офицеру Хотинскому. Побывав в лаборатории Эдисона, он передал ему изобретения Лодынина и Яблочкина.
Американец доработал новинку, применив вместо угольного стержня буковую нить. Чтобы придумать, как усовершенствовать работу лампы, ему пришлось предпринять около 6000 попыток, но цель была достигнута — его лампочка могла гореть почти сто часов. Эдисон запатентовал изобретение как свое, чем вызвал протест у Яблочкова.
https://youtube.com/watch?v=sAR-9JRAThk
Из истории создания видно, что к изобретению лампочки причастны многие передовые ученые того времени. Кто бы ни был первооткрывателем, без этого удивительного изобретения мир был бы совсем иным.
https://youtube.com/watch?v=YWBLsf_rq_0
Как устроена ЛН и принцип ее работы
Устройство лампочки накаливания мало изменилось за время ее развития. Основным элементом, работающим на принципе свечения раскаленного вещества, является нить или тело накаливания. Это тонкая вольфрамовая проволочка диаметром 30-40, максимум 50 микрон или микрометров (миллионных частей метра).
Цвета каления начинаются с красного и при увеличении температуры проходят через оранжевый, желтый до белого. При дальнейшем увеличении температуры металл тела накаливания сначала плавится, а потом, при наличии кислорода, горит.
https://youtube.com/watch?v=wMx6K-90kSc
Холодная вольфрамовая нить имеет малое удельное сопротивление. У вольфрама, как и большинства металлов, положительный температурный коэффициент сопротивления ТКС. Это значит, что в процессе разогрева нити электрическим током ее сопротивление увеличивается.
На разогрев нити требуются доли секунды. За это время ее сопротивление увеличивается. Первоначально большой ток, проходящий через лампу, по мере прогрева газа, колбы и всех конструктивных элементов снижается до номинального. Так источник света выходит на заданный режим и выдает паспортный световой поток. Оттенок свечения тоже становится номинальным, т.е. соответствующим цветовой температуре от 2000 до 3500 K. Он называется теплым белым и в указанном диапазоне имеет несколько градаций цветовой температуры с оригинальными названиями и аббревиатурами. Например:
- супер-теплый белый – 2200-2400 K, обозначается S-Warm или S-W, он же очень теплый белый или Warm 2400;
- теплый – 2600-2800 K или Warm 2700;
- белый теплый – 2700-3500 K или Warm White (WW);
- еще один теплый – 2900-3100 K или Warm 3000 (W).
Температура отдельных элементов лампы
Наружная поверхность колбы ЛОН зависит от мощности лампы и может нагреваться до 250-300℃ и более.
Нить раскаляется до 2000-2800℃, при температуре плавления вольфрама 3410°C.
В некоторых конструкциях нить изготавливают из осмия с температурой плавления 3045℃ или рения – 2174. Так спектр свечения ЛН смещается в красную зону видимого спектра.
Какой газ в колбе лампы
В первых лампах воздух из колбы выкачивали. Сейчас вакуумируют (выкачивают воздух) только лампочки малой мощности, не более 25 Вт.
При работе вольфрамовой проволочки, раскаленной до 2-3 тысяч градусов, с ее поверхности интенсивно испаряется металл. Его пары оседают на внутренней части колбы и уменьшают ее светопропускание.
Исследования, проведенные в начале прошлого века, показали, что если заполнить колбу инертным газом, то испарение уменьшится и повысится выход света. Поэтому колбы стали заполнять одним из инертных газов или их смесью. Чаще всего это аргон, азот, ксенон, криптон, гелий и пр. Гелий используют для эффективного пассивного охлаждения внутренних элементов светодиодных ламп-ретрофитов нового вида.
https://youtube.com/watch?v=mT-FrY7ftQo
Их основной светоизлучающий элемент – тонкий стержень из искусственного сапфира или стекла, на котором расположены кристаллы светодиодов. Такой излучатель назван филаментом. Некоторые «эксперты» перепутали суть филаментных ламп и назвали их «лампами с сапфировыми излучателями света». Хотя искусственный сапфир в этих лампах используется только как монтажное основание и пассивный теплоотвод для светодиодных кристаллов.
Выход ЛН из строя в большинстве случаев связан не с испарением металла с поверхности тела накаливания, а с ускорением этого процесса в зонах нарушения толщины нити. Это происходит в зоне резкого перегиба проволочки или ее перелома. В этом месте ее сопротивление локально увеличивается, растут напряжение, рассеиваемая мощность и температура металла. Испарение ускоряется, становится лавинообразным, нить быстро уменьшает толщину и сгорает.
Эту проблему решили в конце 1950 – начале 1960-х, начав массовый выпуск галогенных ламп накаливания.
В состав инертного газа или смеси стали вводить галогены – хлор, бром, фтор или йод. В результате процесс испарения металла прекращается совсем или существенно замедляется. Атомы этих добавок связывают пары вольфрама, образуя молекулы нестойких соединений. Они оседают на поверхности тела накаливания. Под действием высокой температуры молекулы распадаются и выделяют атомы галогенов и чистый металл, который оседает на горячей поверхности нити и частично восстанавливает испарившийся слой.
Этот процесс интенсифицируют повышением давления. При этом увеличивается температура нити, срок службы, светоотдача, КПД и другие характеристики. Спектр излучения сдвигается в белую сторону. В газонаполненных лампах замедляется потемнение поверхности колбы изнутри от паров вольфрама. Такие источники света назвали галогенными.
Принцип действия
Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.
Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.
Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.
Коэффициент полезного действия
Как уже говорилось, ввиду того, что строение лампы накаливания подразумевает разогрев спирали, 95% подающейся на осветительный прибор энергии уходит в тепло, выделяемое при ее работе, и лишь 5% идет непосредственно на освещение. Это тепло является инфракрасным излучением, которое глаза человека не воспринимают. Потому коэффициент полезного действия таких осветительных приборов при повышении температуры лампы накаливания до 3 400 К составит 15%. При снижении ее до 2 700 К (что соответствует температуре работы лампы в 60 Ватт) КПД ламп составит уже 5%. Получается, что с повышением температурных режимов повышается и КПД, но при этом значительно падает срок службы. Значит, при условии понижения тока падает и коэффициент полезного действия, зато долговечность прибора возрастет в тысячи раз. Такой способ увеличения срока службы ламп часто используется в подъездах многоквартирных домов, где питание на источники подается последовательно на два осветительных прибора, либо к лампе последовательно подключается диод, что позволяет понизить ток сети.
Классификация ламп для домашнего освещения
Для освещения дома и квартиры применяются четыре вида ламп:
- накаливания;
- галогенные;
- люминесцентные;
- светодиодные.
По типу цоколя делятся на лампочки с резьбовым (Е) и со штырьковым (G).
Распространенные размеры для дома и квартиры: Е14 и Е27, GU10 и GU5.3.
Определяют, какой цоколь и размер лампы необходим, по типу светильника.
Лампы накаливания
Классический вариант для организации освещения дома – экономные лампы накаливания.
Положительные стороны:
- низкая стоимость,
- доступность (различные по мощности и по размеру цоколя, есть практически в каждом магазине и подбираются под светильник),
- безопасность (не содержит паров ртути, практически не мерцает, излучает мягкий желтый свет, который не портит зрения),
- простота монтажа,
- мгновенное зажигание при включении.
Отрицательные стороны:
- на освещение уходит 20 % мощности, остальные 80 % – на разогрев,
- небольшой срок эксплуатации (до 1 000 часов),
- излучают много тепла и потому не подойдут для установки в светильниках на натяжном и накладном потолках,
- низкая устойчивость к перепадам напряжения,
- ухудшение качества при производстве,
- не дает возможности выбора цветовой температуры.
Галогенные
Галогенные – улучшенный вариант ламп накаливания. Для продления срока службы в колбе содержатся пары йода или брома. По эффективности они в три раза лучше ламп накаливания. Например, галогенка мощностью 30 Ватт светит аналогично лампе накаливания 95 Ватт.
Существующие виды:
линейные. Представляют собой тонкую трубку из кварца с двухсторонним цоколем
Очень важно размещать строго по горизонтали, чтобы избежать перегрева одного из концов лампочки;
с внешней колбой. Представляет собой стандартную галогенную капсульную лампу, которая помещена в дополнительную стеклянную колбу
Внешне похожа на лампу накаливания;
с отражателем. Это лампочки направленного света с рефлектором из алюминия;
капсульные. По внешнему виду напоминает капсулу (длиной до 3 см), которая оснащена выводами для цоколя.
Положительные стороны:
- безопасна для глаз, так как излучаемый свет приближен к естественному,
- низкая стоимость (хотя и выше, чем лампы накаливания),
- увеличенный срок эксплуатации (до 4 000 часов),
- компактная,
- небольшой расход электроэнергии,
- большая точность управления световым пучком,
- небольшие размеры подходят для установки в маленьких светильниках,
- возможно использование с диммером.
Отрицательные стороны:
- из-за конструктивных особенностей галогеновую лампочку нельзя трогать руками,
- нагревается,
- ухудшение качества производства,
- низкочастотный шум при использовании с диммером,
- чувствительность к перепадам напряжения (более, чем у ламп накаливания),
- нельзя использовать в ванной комнате, так как под воздействием влаги могут взорваться,
- требуют специальных условий утилизации.
Люминесцентные
Люминесцентные лампы относятся к энергосберегающим. У них повышенная светоотдача, долгий срок службы и возможность выбора цвета свечения.
Недостатки:
- внутри лампочка содержит пары ртути, что требует аккуратного использования. Если повредить колбу, пары ртути высвобождаются и приносят вред здоровью. Эта особенность требует утилизации в специальных местах;
- ультрафиолетовое излучение. Не рекомендуется применение дома в настольных торшерах и ночниках, а также на расстоянии ближе 30 см от человека;
- чувствительность к частым включениям и выключениям, снижающим срок службы;
- зависимость от влажности и перепада температур;
- эффект мерцания;
- долгое время запуска (до двух минут);
- низкочастотный слышимый гул от электронного балласта;
- часто невозможно использовать, если в доме есть выключатель с подсветкой;
- изменение цветовой температуры со временем. Если в люстре перегорела одна из лампочек, лучше заменить их все, чтобы излучаемый свет был одинаковым.