Измерительные трансформаторы тока и напряжения. векторные диаграммы. характеристики погрешностей

Содержание

Алгоритм создания лучевой векторной диаграммы в Excel

Чтобы упростить наш урок, давайте предположим, что мы говорим об отношениях не между четырнадцатью как на графике, а пока только с 4-ма людьми по имени Антон, Алиса, Борис и Белла.

Наша матрица уровня отношений и связей между ними выглядит следующим образом:

Как можно геометрически смоделировать визуализацию этих исходных данных? Если бы мы нарисовали отношения между этими четырьмя людьми (Антон, Алиса, Борис и Белла), это схематически выглядело бы так:

2 критерия, которые нам нужно определить:

Определение и построение точек

Сначала нам нужно построить наши точки таким образом, чтобы промежуток между каждой точкой был одинаковым. Это создаст сбалансированный график.

Какая геометрическая фигура максимально удовлетворяет нашу потребность в таких равных промежутках? Конечно же круг!

Вы можете возразить, что на готовой модели диаграммы нет фигуры круга. Да действительно нет –вот так. Нам не нужно рисовать круг. Нам просто нужно построить точки вокруг него.

Таким образом, у нас есть 4 заинтересованные стороны, нам нужно 4 точки:

Как только все точки рассчитаны и подключены к XY-диаграмме (точечная диаграмма), давайте двигаться дальше.

Построение линий на лучевой диаграмме

Нам нужно разделить его на 2, как будто A знает B, тогда B тоже знает A. Но нам нужно нарисовать только 1 линию.

Шаблон лучевой диаграммы для анализа сетевого графика настроен для работы с 20 людьми. Его можно скачать в конце статьи и использовать как готовый аналитический инструмент визуализации данных связей. Это означает, что максимальное количество строк, которое мы можем иметь, будет равно 190.

Каждая строка требует добавления отдельной серии на график. Это означает, что нам нужно добавить 190 серий данных только для 20 человек. И это удовлетворяет только одному типу линии (пунктирная или толстая). Если нам нужны разные линии в зависимости от типа отношений, нам нужно добавить еще 190 серий.

Это больно и смешно одновременно. К счастью, выход есть!

Мы можем использовать гораздо меньшее количество серий и по-прежнему строить один и тот же график.

Допустим, у нас есть 4 человека – A,B,C и D. Ради простоты, давайте предположим, что координаты этих 4-х участников следующие:

И скажем, A имеет отношения с B, C и D.

Это означает, что нам нужно нарисовать 3 линии, от A до B, от A до C и A до D.

Теперь, вместо того, чтобы поставить 3 серии для диаграммы, что если мы поставим одну длинную серию, которая выглядит следующим образом:

Это означает, что мы просто рисуем одну длинную линию от A до B, от A до C, от A до D. Договорились, что это не прямая линия, но точечные диаграммы Excel могут нарисовать любую линию, если вы предоставите ей набор координат.

Смотрите эту иллюстрацию, чтобы понять технику:

Таким образом, вместо 190 рядов данных для диаграммы нам просто нужно 20 рядов.

На последнем графике мы имеем 40 + 2 + 1 ряд данных. Это потому что:

Как сгенерировать все 20 серий данных:

Это требует следующей логики:

Нам нужны формулы MOD и INDEX для выражения этой логики в Excel.

Как только все координаты линии будут рассчитаны, добавьте их к нашему точечному графику как новые ряды используя инструмент из дополнительного меню: «РАБОТА С ДИАГРАММАМИ»-«КОНСТРУКТОР»-«Выбрать данные» в окне «Выбор источника данных» используйте кнопку «Добавить» для добавления всех 43-х рядов.

Реализовывать создание такой лучевой диаграммы связей будем в 3 этапа:

Сложение и вычитание векторов

Главным достоинством векторных — это возможность простого сложения и вычитания двух величин. Например: требуется сложить, два тока, заданных уравнениями

Советуем изучить Самодельная телевизионная антенна: для dvb и аналогового сигнала

Сложим два заданных тока i1 и i2 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:

Im = Im1 + Im2

Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллель но самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.

Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).

Вычитание одного вектора из другого выполняют сложением прямого вектора (уменьшаемого) и обратного (вычитаемого) (рис. 12.13):

При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.

Обработка данных для построения лучевой диаграммы

На следующем листе с именем «Обработка» создаем сначала 2 таблицы: одна обычная, вторая умная. Обычная таблица заполнена формулами и значениями так как показано на рисунке:

Обратит внимание!!!:

  1. В ячейках B9 и B10 используются формулы массива поэтому при их вводе следует использовать комбинацию клавиш CTRL+SHIFT+Enter.
  2. Умная таблица должна быть расположена не выше 45-ой строки текущего листа Excel. Для данной таблице будет регулярно применятся фильтр, который будет скрывать часть строк листа. Нельзя допустить чтобы в эти строки попадали другие значения.

Рядом создаем еще одну таблицу для вычисления координат на основе данных первой таблицы. Для этого используется 2 формулы для значений X и Y:

Следующая таблица создана для построения координат линий – отношений на уровне знакомых. Таблица содержит 40 строк и 40 столбцов. Каждая пара столбов – это входящие данные для радов диаграммы. Все ячейки заполнены одной сложной формулой:

Рядом же сразу создаем аналогичным образом таблиц с координатами построения линий – отношений на уровне друзей. Все ее ячейки заполнены формулой:

Эти две таблицы будут использованы для построения серых линий. А теперь создадим еще одну таблицу для построения синих и зеленых линий для выделенного участника:

В каждом столбце этой таблицы используются разные формулы:

Столбец листа CM (X-синяя):

CN (Y- синяя):

CO (X- зеленая):

CP (X- зеленая):

Все с обработкой закончили! У нас есть все координаты для точек и линий. Осталось только построить лучевую диаграмму визуализировав таким образом входящие значения на листе «Данные».

Векторная сумма — ток

Векторная сумма токов lt Ц I дает общий ток в цепи.

Векторная сумма токов Ij 1.2 I дает общий ток в цепи.

Хр и Rp и представляют собой векторную сумму токов статора и приведенного роторного.

Общий ток в цепи равен векторной сумме токов .

Обший ток в цепи равен векторной сумме токов .

При разветвлении тока общий ток равен векторной сумме токов в отдельных ветвях.

Таким образом, при наличии токов нулевой последовательности векторная сумма токов трех фаз отлична от нуля.

Тогда, как это видно из чертежа, векторная сумма тока повреждения , начального тока небаланса и тока температурлого небаланса может оказаться такой, что реле срабатывает в то время, как напряжение на поврежденной секции остается в пределах нормы. При этом следует помнить, что токи начального и температурного небалансов могут иметь какую угодно фазу и вызывать как неправильное срабатывание реле, так и его отказ.

В работают оба элемента; при этом ток фазы В получается как векторная сумма токов фаз Л и С. При измерении мощности работают оба элемента.

Однако это равенство может быть при уменьшении тока 1А восстановлено путем уменьшения векторной суммы токов JB IC за счет увеличения угла сдвига по фазе между этими токами.

В прерывателях остаточного тока проводники в контуре намотаны вокруг кольца, определяющее векторную сумму токов , которые входят и возбуждают оборудование, подлежащее защите. Во время нормальной работы векторная сумма равна нулю, а во время пробоя она равна току утечки. Когда ток утечки достигает порога прерывателя, прерыватель срабатывает. Прерыватели остаточного тока могут размыкаться низкими токами в 30 мА с малым запаздыванием — 30 микросекунд.

В такой цепи ток / в неразветвленной части определяется согласно первому закону Кирхгофа как векторная сумма токов в ветвях.

Источник

Примеры применения

Условия резонанса

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k


Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.


Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.


Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Векторная диаграмма

Векторная иллюстрация Представляя синусоидальные токи, напряжения и ЭДС в комплексных числах, они могут быть представлены на комплексной плоскости в виде векторов и в виде соответствующей векторной диаграммы, для процесса расчета схемы, для этих чисел Может быть отображено.

Это один из основных инструментов для анализа электрических цепей, они четко иллюстрируют процесс решения проблемы, качественно контролируют и легко устанавливают квадрант, в котором находится нужный вектор.

Диаграмма вектора тока и напряжения 1 Для удобства при построении диаграммы статический вектор анализируется в определенный момент времени. Это выбрано так, чтобы диаграмма была в легко понятном формате.

Ось OX соответствует реальному значению, а ось OY соответствует мнимой оси (мнимая единица). Синусоида указывает, что конечная точка проекции перемещается к оси OY.

Каждое напряжение и ток соответствуют собственному вектору на полярной плоскости. Его длина отображает текущее значение амплитуды, а угол равен фазе. Вектор, изображенный на такой диаграмме, характеризуется равной угловой частотой ω. Во время вращения их относительные положения не меняются.

Таким образом, векторная диаграмма дает четкое представление о различных электрических выводах или наконечниках. В основном, векторные диаграммы представляют фактические значения, а не амплитуды. Вектор действительных значений количественно отличается от значения амплитуды.

Решение задач Лекции
Расчёт найти определения Учебник методические указания

Векторная графика — хороший способ правильно отобразить переменные, которые определяют функции беспроводного устройства. Это означает соответствующее изменение основных параметров сигнала в соответствии со стандартной синусоидальной (косинусоидальной) кривой. В визуальном представлении процесса гармонические колебания представлены в виде векторных проекций на оси координат.

  • Вы можете легко рассчитать длину по стандартной формуле. Это равно амплитуде в определенный момент времени.
  • Угол наклона указывает на фазу.
  • Общий эффект и соответствующее изменение вектора следуют нормальным правилам геометрии.
  • Различают графики высокого качества и точные графики.

Первый используется для объяснения взаимосвязей. Они полезны для проведения предварительных оценок и используются для полной замены расчетов. Другие создаются с учетом результатов, полученных для определения размера и ориентации отдельных векторов.

Решение задач по электротехнике тоэ

Комплексные сопротивление и проводимость Треугольники сопротивлений, проводимостей, мощностей, напряжений и токов
Мощность в цепи синусоидального тока Расчет цепей с взаимными индуктивностями

Файл-архив ›› Векторные диаграммы в релейной защите и автоматике. Шацков Ю. Л., Каргин С. В Библиотека электротехника

Изложены основные понятия и принципы снятия векторных диаграмм. Приведены примеры практического использования векторных диаграмм для проверки правильности подключения устройств РЗА, а также рассмотрены особенности снятия и использования векторных диаграмм при анализе работы МП РЗА. Для специалистов, занимающихся эксплуатацией, монтажом и наладкой устройств РЗА.Книга из серии Библиотечка электротехника. 120 выпуск 

СодержаниеПредисловиеГЛАВА ПЕРВ АЯ. Построение векторных диаграмм . . . .1.1. Основные понятия и определения1.2. Общие вопросы построения векторных диаграмм.1.3. Построение вектора первичного тока1.4. Построение вектора вторичного тока1.5. Построение вектора вторичного напряжения1.6. Снятие векторных диаграмм.ГЛАВА ВТОРАЯ. Примеры практического использования векторных диаграмм2.1. Проверка правильности включения реле мощности нулевой последовательности.2.2. Проверка правильности включения реле мощности обратной последовательности (РМОП).2.3. Проверка правильности подключения приборов учета электрической энергии (счетчиков).2.4. Проверка правильности схемы соединений трансформаторов тока по фазам и по их полярности дифференциальной защиты трансформатора.2.5. Реле мощности в схеме автоматики, действующей при повышении напряжения2.6. Проверка направленности реле сопротивления дистанционной защиты типа ЭПЗ-1636 2.7. Проверка направленности защит типа ШДЭ 2801(2802) ГЛАВА ТРЕТЬЯ. Современные микропроцессорные(цифровые) устройства РЗА3.1. Некоторые особенности применениямикропроцессорных устройств РЗА (МП РЗА).3.2. Использование векторных диаграммпри проверке рабочим током и напряжением.3.3. Применение векторных диаграммдля анализа работы защиты при возникновениивозмущений в электрических сетях.3.4. Векторные диаграммы в регистраторахаварийных событий (РАС)

Построение векторной диаграммы напряжений.

4.1 На комплексной плоскости строятся векторы фазных напряжений питающей сети А, В, С; соединив их концы, получают векторы линейных напряжений АВ, ВС, СА. Затем строятся векторы фазных напряжений нагрузки А нагр., В нагр., С нагр. Для их построения можно использовать обе формы записи комплексов токов и напряжений.

Например, вектор А нагр. строится по показательной форме следующим образом: от оси +1 под углом 6 10 , т.е. против часовой стрелки, откладывается отрезок длиной 6,96 см; по алгебраической форме его можно построить, отложив по оси +1 отрезок длиной 6,81 см, а по оси + j отрезок длиной 0,76 см, концы этих отрезков являются координатами конца вектора А нагр.

4.2 Т.к. линейные напряжения нагрузки заданы питающей сетью, для определения положения нейтрали нагрузки необходимо выполнить параллельный перенос векторов фазных напряжений нагрузки А нагр., В нагр., С нагр. так, чтобы их концы совпали с концами фазных напряжений питающей сети.

Точка 0, в которой окажутся их начала, есть нейтраль нагрузки. В этой точке находится конец вектора напряжения смещения нейтрали 0, его начало расположено в точке 0. Этот вектор можно также построить, используя данные таблицы 9.

Векторные диаграммы трансформатора

ü Построение диаграммы следует начинать с вектора максимального значения основного магнитного потока: Фmax=Е1/(4,44·f·W1). Вектор I0 опережает по фазе вектор потока Фmax на угол δ, а ЭДС Е1 и Е2/ отстают от этого вектора на угол 900.

ü Далее строим вектор I2/ . Для определения угла сдвига фаз между E2/ и I2/ следует знать характер нагрузки. Предположим, что нагрузка трансформатора активно-индуктивная. Тогда вектор I2/ отстает по фазе от E2/ на угол

ü Для построения вектора вторичного напряжения U2/ необходимо из вектора ЭДС E2/ вычесть векторы падений напряжения jI2/ x2/ и I2/ r2/. С этой целью из конца вектора E2/ опускаем перпендикуляр на направление вектора тока I2/ и откладываем на нем вектор — jI2/ x2/. Затем проводим прямую, параллельную I2/ , и на ней откладываем вектор — I2/ r2/. Построив вектор I2/ Z2/, получим треугольник внутренних падений напряжения во вторичной цепи.

ü Затем из точки О проводим вектор U2/= E2/-I2/·Z2/, который опережает по фазе ток I2/ на угол φ2=arctg (хн/ /rн’).

ü Вектор первичного тока строим как векторную сумму: I1=I0+(-I2/). Вектор — I2/ проводим из конца вектора I0 противоположно вектору I2/.

ü Построим вектор U1= (-E1)+ jI1·х1+ I1·r1, для чего к вектору -E1, опережающему по фазе вектор потока Фmax на 90°, прибавляем векторы внутренних падений напряжения первичной обмотки: вектор I1·r1, параллельный току I1, и вектор jI1·х1, опережающий вектор тока I1 на угол 90°. Соединив точку О с концом вектора I1·Z1, получим вектор U1, который опережает по фазе вектор тока I1, на угол φ1.

v При значительной емкостной составляющей нагрузки падение напряжения в емкостной составляющей сопротивления нагрузки и индуктивное падение напряжения рассеяния во вторичной обмотке частично компенсируют друг друга, в результате чего вторичное напряжение может оказаться больше чем ЭДС

Измерение вторичного напряжения трансформатора при увеличении нагрузки от х.х. до номинальной является важнейшей характеристикой трансформатора и определяется упрощенным выражением, которое можно получить из схемы замещения трансформатора при определенных допущениях:

где uka , ukp – это активная и реактивная составляющие напряжения короткого замыкания.

ϕ2 – угол сдвига между напряжением и тока вторичной обмотки.

где β — коэффициент нагрузки, представляющий собой относительное значение тока нагрузки b=I2/I2ном

v из выражения следует, что изменение вторичного напряжения ΔU зависит не только от величины нагрузки трансформатора (b), но и от характера этой нагрузки (j2).

v Зависимость вторичного напряжения U2/ трансформатора от нагрузки называют ______________________________.

Лекция №3

Схемы и группы соединения обмоток трансформатора в звезду, треугольник, зигзаг. Соотношение линейных и фазных величин в трансформаторе при различных схемах соединения.

Схемы соединений обмоток трансформатора:

______________ ________________ ________________

Возможные схемы соединения обмоток трехфазного трансформатора: Y/Y, Y/Δ, Δ/Y, Δ/Δ, Y/Z, Δ/Z.

Сложение и вычитание векторов

Главным достоинством векторных — это возможность простого сложения и вычитания двух величин. Например: требуется сложить, два тока, заданных уравнениями

Советуем изучить Все виды преобразователей напряжения

Сложим два заданных тока i1 и i2 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:

Im = Im1 + Im2

Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллель но самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.

Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).

Вычитание одного вектора из другого выполняют сложением прямого вектора (уменьшаемого) и обратного (вычитаемого) (рис. 12.13):

При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.

Виды и построение векторных диаграмм

Векторные диаграммы широко применяются в акустике, электротехнике, оптике и других областях. Они разделяются на два основных вида – точные и качественные.

Для изображения точных векторных диаграмм применяются численные расчеты с условием, что действующие значения будут соответствовать определенным масштабам. Правильное построение дает возможность геометрического определения фаз и амплитудных значений нужных величин.
При составлении качественных диаграмм в первую очередь учитываются взаимные соотношения между электрическими параметрами, без использования каких-либо числовых данных. Они относятся к основным средствам, позволяющим анализировать электрические цепи, наглядно демонстрировать и осуществлять качественный контроль над решением той или иной задачи. С помощью диаграмм довольно просто определяется квадрант, где расположен нужный вектор.

Для того чтобы сделать построение диаграмм более удобным, необходимо проанализировать состояние неподвижных векторов на определенный момент времени, выбираемый с таким условием, чтобы сама диаграмма приобрела наиболее оптимальный внешний вид.

На оси ОХ будут откладываться действительные числа, а на оси OY – мнимые числа или единицы. С помощью синусоиды отображается движущийся конец проекции на ось OY. Каждое значение напряжения и тока отображается на плоскости в полярных координатах, в соответствии с собственным вектором. Его длина будет отображать значение амплитудной величины тока, а углы будут равны фазам. Для векторов, отображаемых на диаграмме, характерна равновеликая угловая частота, обозначаемая символом ω. Поэтому во время вращения взаимное расположение угловых частот остается неизменным. Это дает возможность при построении диаграмм направить один вектор произвольно, а остальные отобразить по отношению к нему под различными углами в соответствии со сдвигами фаз.

Обработка данных для построения лучевой диаграммы

На следующем листе с именем «Обработка» создаем сначала 2 таблицы: одна обычная, вторая умная. Обычная таблица заполнена формулами и значениями так как показано на рисунке:

Обратит внимание!!!:

  1. В ячейках B9 и B10 используются формулы массива поэтому при их вводе следует использовать комбинацию клавиш CTRL+SHIFT+Enter.
  2. Умная таблица должна быть расположена не выше 45-ой строки текущего листа Excel. Для данной таблице будет регулярно применятся фильтр, который будет скрывать часть строк листа. Нельзя допустить чтобы в эти строки попадали другие значения.

Рядом создаем еще одну таблицу для вычисления координат на основе данных первой таблицы. Для этого используется 2 формулы для значений X и Y:

Следующая таблица создана для построения координат линий – отношений на уровне знакомых. Таблица содержит 40 строк и 40 столбцов. Каждая пара столбов – это входящие данные для радов диаграммы. Все ячейки заполнены одной сложной формулой:

Рядом же сразу создаем аналогичным образом таблиц с координатами построения линий – отношений на уровне друзей. Все ее ячейки заполнены формулой:

Эти две таблицы будут использованы для построения серых линий. А теперь создадим еще одну таблицу для построения синих и зеленых линий для выделенного участника:

В каждом столбце этой таблицы используются разные формулы:

Столбец листа CM (X-синяя):

CN (Y- синяя):

CO (X- зеленая):

CP (X- зеленая):

Все с обработкой закончили! У нас есть все координаты для точек и линий. Осталось только построить лучевую диаграмму визуализировав таким образом входящие значения на листе «Данные».

Что такое векторная диаграмма токов и напряжений? Как построить график

Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты.

Векторной диаграммой принято называть геометрическое представление изменяющихся по синусоидальному (либо косинусоидальному) закону направленных отрезков — векторов, отображающих параметры и величины действующих синусоидальных токов, напряжений либо их амплитудных величин.

Различают 2-х вида векторных диаграмм:

  • точные;
  • качественные.

Интересное видео о векторных диаграммах смотрите ниже:

Точные изображаются по результатам численных расчетов при условии соответствия масштабов действующих значений. При их построении можно геометрически определить фазы и амплитудные значения искомых величин.

Они являются одним из основных средств анализа электрических цепей, позволяя наглядно иллюстрировать и качественно контролировать ход решения задачи и легко установить квадрант, в котором располагается искомый вектор.

Для удобства при построении диаграмм анализируют неподвижные векторы для определенного момента времени, который выбирается таким образом, чтобы диаграмма имела удобный для понимания вид. Ось OХ соответствует величинам действительных чисел, ось OY — оси мнимых чисел (мнимая единица). Синусоида отображает движение конца проекции на ось OY. Каждому напряжению и току соответствует собственный вектор на плоскости в полярных координатах. Его длина отображает амплитудное значение величины тока, при этом угол равен фазе.

Векторы, изображаемые на такой диаграмме, характеризуются равновеликой угловой частотой ω. В виду чего при вращении их взаимное расположение не изменяется.

Ещё одно полезное видео о векторных диаграммах:

А остальные — изображать по отношению к исходному под различными углами, соответственно равными углам сдвига фаз.

Таким образом, векторная диаграмма дает отчетливое представление об опережении либо отставании различных электрических величин. Допустим у нас есть ток, величина которого изменяется по некоторому закону:

i = Im sin (ω t + φ).

С начала координат 0 под углом φ проведем вектор Im, величина которого соответствует Im. Его направление выбирается так, чтобы с положительным направлением оси OX вектор составлял угол — соответствующий фазе φ.

В основном векторные диаграммы изображают для действующих значений, а не амплитудных. Векторы действующих значений количественно отличаются от амплитудных значений — масштабом, поскольку:

Примеры применения

Допустимый ток для медных проводов — плотность тока в медном проводнике

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.