Токопроводящий клей своими руками
Многие начинающие радиолюбители задаются вопросом, как сделать токопроводящий клей своими руками. Здесь необходимо внести ясность в некоторые вопросы, которые новички задают чаще всего.
- Проводит ли ток клей момент? Это клей, который был разработан и представлен немецкой компанией Хенкель. Всего было создано 6 составов для различных целей, но ни один из них не проводит ток.
- Проводит ли супер клей электричество? Чтобы ответить на этот вопрос, необходимо обратиться к самому понятию электропроводящего материала. Супер клей не содержит компонентов, которые позволили бы назвать его электропроводным (графит, металлы), поэтому его показатели в этом плане практически не отличаются от пластмассы.
- Проводит ли эпоксидный клей электричество? Эпоксидная смола не проводит электрический ток по вышеуказанной причине.
- Можно ли ремонтировать при помощи такого клея провод высокого напряжения? Мастера не рекомендуют этого делать, так как это идет вразрез с правилами безопасности при работе с электричеством.
- Почему контактол не работает? В современное время появилось очень много подделок этого клея, поэтому лучше приобретать этот клей с гарантиями от производителя.
- Какой клей проводит электрический ток? Любой клей, в состав которого входят электропроводящие компоненты в достаточном объеме.
Инструкция по изготовлению
В последнее время радиолюбители нелестно отзываются о современных производителях токопроводящего клея. Быть может, все дело в подделках или сами производители предоставляют некачественный товар. К тому же, токопроводящий клей для микросхем и другого оборудования иногда нужен срочно, и времени на его приобретение или заказ нет. В таком случае можно изготовить такой состав самостоятельно, воспользовавшись нашей инструкцией.
Как сделать токопроводящий клей? Для начала необходимо запастись необходимым набором материалов. Он довольно скромен:
- графитовый стержень от строительного или простого карандаша, который и будет выступать основным токопроводящим элементом в получившемся составе;
- канцелярский нож;
- лист бумаги для сбора графитной пыли;
- молоток;
- емкость для сбора графитной пыли;
- лак для ногтей.
Для начала вам необходимо получить графитный стержень. При помощи канцелярского ножа сточите деревянную часть карандаша до такого состояния, когда графитный стержень можно будет вынуть. После этого положите стержень на лист бумаги, закройте его так, чтобы пыль не разлетелась в стороны и молотком измельчите грифель до состояния пыли. Эта пыль и станет токопроводящим элементом. Соберите пыль в емкость (для этого отлично подойдет обыкновенная крышка от пластиковой бутылки). Налейте в емкость лак для ногтей и тщательно перемешайте с графитной пылью при помощи деревянных палочек, которые могли остаться после обработки карандаша. Теперь токопроводящий клей готов! Удобство этого клея в том, что у вас есть право на ошибку. Лак для ногтей легко удаляется при помощи специального состава.
В народе известны также составы, которые используют в своей основе металлическую крошку или пыль. Можно включить воображение и вспомнить школьный курс химии и физики, где говорилось о токопроводящих материалах. Приведем пример. Графит – это по своей сути углерод с характерной кристаллической решеткой. Углерод также содержится в продуктах горения дерева – в саже. По этой причине токопроводящий клей с сажей также является довольно популярным среди радиолюбителей.
Особенности самодельного клея
- Никто не застрахован от ошибок. Когда вы что-либо делаете своими руками, вы рискуете сделать что-то не так, в результате чего можно повредить дорогостоящее оборудование. Поэтому в некоторых случаях лучше доверить профессионалам и потратиться на приобретение фирменного состава.
- Надежность клея на основе лака для ногтей не так высока, как у покупного клея. Помните о том, что такой лак не будет служить вам вечно и рано, и его ресурс прочности закончится довольно скоро.
- Лак для ногтей довольно долго высыхает, по сравнению с покупными аналогами.
- Самодельный токопроводящий клей гораздо дешевле в изготовлении.
- Процесс изготовления занимает меньше 3 минут, что не сильно тормозит рабочий процесс.
Все эти факты говорят о том, что лучше всего приобрести однажды фирменный токопроводящий клей и пользоваться им долгое время, чем каждый раз делать свой состав, который будет быстро выходить из строя.
Токопроводящий клей – отличное средство для тех, кому необходимо быстро и эффективно осуществить ремонт электрооборудования. И только вам решать, изготовить клей самостоятельно или купить зарекомендованную марку.
Характеристики электротехнических материалов
Главной характеристикой в электротехнике считается удельная электропроводность, измеряемая в См/м. Она служит коэффициентом пропорциональности между вектором напряжённости поля и плотностью тока. Обозначается часто греческой буквой гамма γ. Удельное сопротивление признано величиной, обратной электропроводности. В результате формула, упомянутая выше, обретает вид: плотность тока прямо пропорциональна напряжённости поля и обратно пропорциональна удельному сопротивлению среды. Единицей измерения становится Ом м.
Рассматриваемое понятие сохраняет актуальность не только для твёрдых сред. К примеру, ток проводят жидкости-электролиты и ионизированные газы. Следовательно, в каждом случае допустимо ввести понятие удельного сопротивления, ведь через среду проходит электрический заряд. Найти в справочниках значения, к примеру, для сварочной дуги сложно по простой причине – подобными задачами не занимаются в достаточной степени. Это не востребовано
С момента обнаружением Дэви накала платиновой пластины электрическим током до внедрения в обиход лампочек накала прошло столетие – по схожей причине не сразу осознали важность, значимость открытия
Свойство материала
В зависимости от значения величины удельного сопротивления материалы делятся:
- У проводников – менее 1/10000 Ом м.
- У диэлектриков – свыше 100 млн. Ом м.
- Полупроводники по значениям удельного сопротивления находятся между диэлектриками и проводниками.
Эти значения характеризуют исключительно способность тела сопротивляться прохождению электрического тока и не влияют на прочие аспекты (упругость, термостойкость). К примеру, магнитные материалы бывают проводниками, диэлектриками и полупроводниками.
Свободные электроны
Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой. Атомы металлов имеют небольшое число валентных электронов, расположенных на внешней электронной оболочке. Эти валентные электроны слабо связаны с ядром, и атом легко может их потерять.
Когда атомы металла занимают места в кристаллической решётке, валентные электроны покидают свои оболочки — они становятся свободными и отправляются «гулять» по всему кристаллу (а именно, свободные электроны перемещаются по внешним орбиталям соседних атомов. Эти орбитали перекрываются друг с другом вследствие близкого расположения атомов в кристаллической решётке, так что свободные электроны оказываются «общей собственностью» всего кристалла). В узлах кристаллической решётки металла остаются положительные ионы, пространство между которыми заполнено «газом» свободных электронов (рис. 1).
Рис. 1. Свободные электроны
Свободные электроны и впрямь ведут себя подобно частицам газа (другой адекватный образ — электронное море, которое «омывает» кристаллическую решётку) — совершая тепловое движение, они хаотически снуют туда-сюда между ионами кристаллической решётки. Суммарный заряд свободных электронов равен по модулю и противоположен по знаку общему заряду положительных ионов, поэтому металлический проводник в целом оказывается электрически нейтральным.
Газ свободных электронов является «клеем», на котором держится вся кристаллическая структура проводника. Ведь положительные ионы отталкиваются друг от друга, так что кристаллическая решётка, распираемая изнутри мощными кулоновскими силами, могла бы разлететься в разные стороны. Однако в тоже самое время ионы металла притягиваются к обволакивающему их электронному газу и, как ни в чём не бывало, остаются на своих местах, совершая лишь тепловые колебания в узлах кристаллической решётки вблизи положений равновесия.
Что произойдёт, если металлический проводник включить в замкнутую цепь, содержащую источник тока? Свободные электроны продолжают совершать хаотическое тепловое движение, но теперь — под действием возникшего внешнего электрического поля — они вдобавок начнут перемещаться упорядоченно. Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле (поэтому свободные электроны называются также электронами проводимости). Скорость упорядоченного движения электронов в металлическом проводнике, как нам уже известно, составляет приблизительно 0,1мм/с.
Какой металл является наилучшим проводником? — Вся правда о Мифах
Серебро.
Самый лучший проводник тепла и электричества является также и самым отражающим из всех химических элементов. Главный недостаток серебра в том, что оно слишком дорогое. Единственная причина, почему в нашем электрооборудовании мы используем не серебряные, а медные провода, заключается в том, что медь — второй по проводимости элемент — намного дешевле.
Помимо украшений, серебро главным образом используется в фотопромышленности, батарейках с длительным сроком эксплуатации и солнечных панелях.
Серебро обладает любопытнейшей способностью стерилизовать воду. Причем требуется буквально крошечное количество — десять частей на миллиард. Сей удивительный факт был известен еще с древнейших времен: так, в V веке до н. э. Геродот писал о персидском царе Кире, который постоянно возил с собой личный запас воды, взятой из особого источника, вскипяченной и запечатанной в серебряные сосуды.
И римляне, и греки не раз отмечали, что еда и питье, помещенные в серебряную посуду, сохраняются намного дольше. Сильные бактерицидные качества серебра использовались за множество веков до того, как были обнаружены сами бактерии. Этим можно объяснить, почему на дне древних колодцев часто находят серебряные монеты.
Небольшое предостережение, прежде чем вы начнете лить пиво в свою серебряную кружку.
Во-первых, серебро хоть и убьет бактерии в лабораторных условиях, однако далеко не факт, что оно даст тот же самый эффект, оказавшись у вас внутри. Многие из предполагаемых достоинств серебра до сих пор не подтверждены. А Управление по санитарному надзору за качеством пищевых продуктов и медикаментов в США даже запретило компаниям рекламировать пользу серебра для здоровья.
Во-вторых, существует такая болезнь — аргирия. Ее развитие напрямую связано с попаданием внутрь организма человека частиц серебра, растворенных в воде. Наиболее явным симптомом аргирии является отчетливый голубой оттенок кожи.
С другой стороны, соли серебра являются наиболее безопасным заменителем хлора в воде плава тельных бассейнов, а в США серебром даже пропитывают носки легкоатлетов, чтобы ноги не пахли.
Вода — исключительно плохой проводник электричества, особенно вода чистая, которая, кстати, используется как диэлектрик. Все дело в том, что электричество проводят не молекулы Н2O, а растворенные в воде химикаты — например, соль.
Морская вода проводит электричество в сто раз лучше пресной, но даже при этом она в миллион раз худший проводник электричества по сравнению с серебром.
bustersmyth.ru
Удельное электрическое сопротивление стали
Многие в курсе, что заземление это соединение корпусов приборов и других железок со специальной конструкцией , вкопанной в грунт. Оно призвано замкнуть опасное напряжение на ноль подстанции и не дать ему добраться до вашего тела. Но как именно оно это делает? Конечно, земля это не изолятор — в ней есть жидкость и растворы разных веществ, способных проводить ток. Но расстояние от места заземления до, собственно, подстанции иногда измеряется десятками километров — как ток может дойти так далеко по такому плохому проводнику? Читайте дальше — мы всё вам расскажем! Главный фактор , который обеспечивает работоспособность заземления — бесконечно большое сечение грунта. Представьте себе плохой проводник, например графит. Если сравнить его с медным проводником той же толщины, он проводит ток хуже в ! А теперь, мысленно начнём увеличивать сечение графитового проводника.
Поговорим о поляризации
Следующий важный термин, о котором пришло время узнать – это поляризация диэлектриков. Дело в том, что процессы смещения зарядов диэлектрика протекают с разной скоростью. Как мы уже сказали ранее, для связанных зарядов время смещения гораздо меньше, а вот другие процессы протекают очень медленно.
При смещении зарядов диэлектрика образуется еще одно поле. Оно как раз и делает главное (внешнее) поле слабее. Как раз явление образования нового поля и называется поляризацией диэлектрика. Теперь давайте углубимся в этот процесс, ведь тут очень много интересных подробностей.
Для начала давайте поймем, почему новое поле появляется именно при смещении. Тут как раз все просто, ведь теперь из беспорядочного состояния диэлектрик становится более упорядоченным – отрицательные заряды теперь расположены левее своих положительных зарядов. Как раз это и создает новое поле.
Проницаемость диэлектрика
А как же измерить, насколько внутреннее поле ослабевает внешнее? Что-ж, здесь все очень просто. Такая мера называется электрическая проницаемость или проницаемость диэлектрика (наверняка вы уже слышали такой термин). Обычно говорят, что проницаемость диэлектрика это постоянная, но на самом деле в связи с тем, что поляризация протекает довольно долго, будем говорить, что эта величина зависит от времени действия внешнего поля.
Как на проницаемость диэлектрика влияет температура?
Но только ли время влияет на электрическую проницаемость. Выясняется, что не только. Оказывается, если увеличить температура, то вместе с этим еще и увеличивается интенсивность теплового движения, а это, как вы понимаете, напрямую влияет на проницаемость диэлектрика. Почему? Все просто: переход в устойчивое состояние становится более сложным, а поэтому диэлектрическая проницаемость с увеличением температуры становится все меньше.
проводит ли стекло электрический ток? Почему?
Стекло при обычных условиях, т. е. в твердом состоянии, является изолятором, и эта его особенность широко используется. Например, металлические контакты — вводы — в приборах впаивают непосредственно в стекло. Однако в расплавленном состоянии стекло проводит электрический ток.
согласна с предыдущим ответом!
стекло не проводник и не диэлектрик, это полу проводник т. к. его свойства несовпадают ни с диэлектриками (пластичность, прочность, хорошая теплопроводность, горение) и проводниками (хорошая теплопроводность, стойкость к огню, остальные свойства могут быть разными в зависимости от вещества) но зато идентичны свойствам полупроводника. например при высокой температуре — проводник, при низкой — диэлектрик
Внедрение технологии
Сравнительно недавно японская фирма порадовала покупателей и выпустила уникальный телевизор. Основным материалом, который использовался при изготовлении являлся токопроводящий пластик. Пластиковые дисплеи являются достаточно тонкими. Их толщина составляет всего 1 мм. В идеале такой экран каждый сможет свернуть в рулон или наклеить его на стену вместо обоев. Стоимость пока кусается, но многие эксперты утверждают, что такие дисплеи могут стать всеобщим достоянием уже через несколько лет. Еще к одному достоинству можно отнести то, что подобные экраны обладают хорошей передачей цвета, а также достаточно низким энергопотреблением.
Пластиковый гибкий телевизор
В университете штата Огайо специалисты впервые изготовили магниты из органического материала. В Нью-Джерси смогли разработать новый электрический лазер, который работал на основе пластика. Если для этого материала создать низкотемпературный режим, то он сможет приобрести свойства сверхпроводника.
Южнокорейская встала на путь создания гибких интегральных схем. Это начало действительно длинного пути по созданию полноценных микросхем, так как на данный момент в разработке находится вопрос о том, как на одной подложке сформировать органические и неорганические транзисторы. В ближайшем будущем практически каждый читатель сможет создать газету своими руками. Достаточно будет просто присоединить лист бумаги к сотовому телефону или компьютеру. Затем всю необходимую информацию можно будет скачать из интернета.
проводит ли стекло электрический ток? Почему?
Стекло при обычных условиях, т. е. в твердом состоянии, является изолятором, и эта его особенность широко используется. Например, металлические контакты — вводы — в приборах впаивают непосредственно в стекло. Однако в расплавленном состоянии стекло проводит электрический ток.
согласна с предыдущим ответом!
стекло не проводник и не диэлектрик, это полу проводник т. к. его свойства несовпадают ни с диэлектриками (пластичность, прочность, хорошая теплопроводность, горение) и проводниками (хорошая теплопроводность, стойкость к огню, остальные свойства могут быть разными в зависимости от вещества) но зато идентичны свойствам полупроводника. например при высокой температуре — проводник, при низкой — диэлектрик
Электрический ток и его проводники
Способность проводить электрический ток имеют не только металлы. При некоторых условиях эту способность приобретают тазы и жидкости.
Свойство химического элемента проводить электрический ток или быть диэлектриком (изолятором) зависит от наличия в нем свободных заряженных частиц. В металлах это электрон – частица, вращающаяся вокруг атома. Вместе электроны и атомы составляют молекулу. В молекуле водорода вокруг атома вращается один электрон. У меди их – 39.
Электроны распределяются группами на разном удалении от атомного ядра. Самая дальняя группа электронов у электропроводящих материалов имеет неустойчивую связь с ядром. При появлении электрического поля они приходят в движение и создают электрический ток.
Электрическое поле всегда распространяется со скоростью света. А вот скорость движения электронов очень мала: десятки сантиметров в секунду. Объясняется это столкновениями при движении электронов с элементами кристаллической решетки проводника. Чем больше этих столкновений, тем хуже проводит материал электрический ток.
Удельное сопротивление
Способность лучше или хуже проводить ток определяется удельным сопротивлением — ⍴ (ро). Вот удельные сопротивления некоторых металлов, применяемых в электротехнике.
Металл |
Удельное сопротивление при 20°С, х10-8 Ом∙м |
Серебро |
1,6 |
Медь |
1,7 |
Золото |
2,3 |
Алюминий |
2,8 |
Вольфрам |
5,5 |
Сталь |
12 |
Нихром |
110 |
Удельное сопротивление зависит от температуры. Чем она ниже, тем сопротивление меньше. Объясняется это тем, что с уменьшением температуры электроны меньше совершают хаотичных движений и меньше сталкиваются. При температуре абсолютного нуля (-273˚С) движение прекращается. У большинства материалов при этом способность проводить ток резко исчезает, но у некоторых возникает явление сверхпроводимости, когда удельное сопротивление равно нулю. При этом величина тока в проводнике ничем не ограничивается.
Сопротивление, ток и мощность
Электрическое сопротивление (R) проводника измеряется в Омах и зависит еще и от его геометрических размеров:
S – площадь сечения проводника в м2, l – его длина в метрах. Ток через проводник измеряется в амперах и подчиняется закону Ома для участка цепи:
U – напряжение в вольтах. Мощность, выделяющаяся на проводнике под действием электрического тока, равна:
Теперь возьмем одинаковых размеров проводники из разных материалов и будем пропускать через них один и тот же ток. Как видно из формул, чем больше у проводника удельное сопротивление, тем большая мощность выделится на нем при прохождении электрического тока.
https://youtube.com/watch?v=953z0BDH1Ik
Вот поэтому для одного и того же тока сечение алюминиевого кабеля нужно больше, чем медного. Медный нагреется до температуры, при которой расплавится изоляция, при большем токе.
Применение нихрома для изготовления нагревательных элементов объясняется его высоким удельным сопротивлением и стойкостью к расплавлению. Тугоплавкость и повышенное удельное сопротивление позволили использовать вольфрам для изготовления нитей накала электроламп.
Золото проводит ток чуть лучше алюминия, но применяется в электронике только из-за того, что не образует окислов.
Направление электрического тока
В зависимости от характера движения зарядов электрический ток разделяется на:
- постоянный, когда движение происходит в одном направлении;
- переменный, когда направление движения постоянно меняется.
В наших сетях ток – переменный, частотой 50 Гц. Он 100 раз в секунду изменяет направление движения на противоположное. Переменный ток имеет преимущество перед постоянным: величину напряжения можно изменять при помощи несложных устройств – трансформаторов.
Постоянный ток может быть получен из переменного и наоборот.
И напоследок – интересный казус. В электротехнике принято считать за направление постоянного тока направление движения положительных зарядов – от плюса к минусу. На самом же деле движутся отрицательно заряженные частицы – электроны. Дело в том, что ученые приняли такое направление до открытия электрона, и оно сохранилось до сих пор.
Презентация на тему: ” Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники.” — Транскрипт:
2
Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники
3
Проводники и диэлектрики все металлы Имеются заряженные частицы (заряды частиц = свободные заряды) Способные перемещаться внутри проводника под действием электрического поля Проводники Диэлектрики Состоят из нейтральных в целом атомов или молекул Заряженные частицы связаны друг с другом и не могут перемещаться под действием поля по всему объему тела
4
Проводники и диэлектрики Свободные заряды – заряженные частицы одного знака, способные перемещаться под действием электрического поля Не могут возникнуть, если энергия связи электрона со своим атомом велика по сравнению с энергией взаимодействия с соседними атомами вещества СВЯЗАННЫЕ ЗАРЯДЫ
5
Проводники и диэлектрики – вещество, в котором свободные заряды могут перемещаться по всему объему ПРОВОДНИК металлы растворы солей, кислот, щелочей Влажный воздух плазма Тело человека
6
Проводники В металлах носители свободных зарядов = электроны При образовании металла из нейтральных атомов атомы взаимодействуют друг с другом электроны внешних оболочек атомов полностью утрачивают связи со своими атомами и становятся собственностью всего проводника в целом положительные ионы окружены отрицательно заряженным газом из электронов (взаимодействие кулоновское)
7
Проводники электрические заряды неподвижны! поле внутри проводника = 0 в проводнике – свободные заряды существовал бы электрический ток E 0 иначе НЕТ ТОКА – НЕТ И ПОЛЯ!!!
8
Проводники заряженный незаряженный, помещенный во внешнее электрическое поле ПРОВОДНИК ВНУТРИ E = 0 (поле отсутствует)
9
Проводники уничтожение электростатического поля в проводнике Электрическое поле Проводящий шар Сначала возникнет электрический ток, так как поле внутри шара вызывает перемещение электронов Части шара заряжаются по-разному: Левая – отрицательно; Правая – положительно (явление электростатической индукции) Эти заряды на поверхности проводника создают электрическое поле, которое накладывается на внешнее поле и компенсирует его
10
Проводники уничтожение электростатического поля в проводнике Линии электростатического поля вне проводника перпендикулярны его поверхности – иначе по поверхности бы протекал электрический ток
11
Диэлектрики – вещество, содержащее только связанные заряды
12
Диэлектрики – вещество, содержащее только связанные заряды ДИЭЛЕКТРИК
13
Диэлектрики – разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга СВЯЗАННЫЕ ЗАРЯДЫ
14
Диэлектрики полностью отсутствуют!!! СВОБОДНЫЕ ЗАРЯДЫ диэлектрик практически не проводит электрический ток ХОРОШИЙ ИЗОЛЯТОР!!!
15
Диэлектрики ГАЗЫ ДИЭЛЕКТРИКИ НЕКОТОРЫЕ ЖИДКОСТИ НЕКОТОРЫЕ ТВЕРДЫЕ ТЕЛА дистиллированная вода, бензол Стекло, фарфор, слюда
16
Диэлектрики в соответствии со структурой их молекул ДИЭЛЕКТРИКИ деление полярные неполярные
17
Диэлектрики (полярные)
18
Диэлектрики (неполярные) В неполярных диэлектриках электростатическое поле сначала поляризует молекулы, растягивая в разные стороны положительные и отрицательные заряды, а затем поворачивает их оси вдоль напряженности поля
19
Диэлектрики – процесс ориентации диполей или появление под действием внешнего электрического поля ориентированных по полю диполей ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКА
20
Диэлектрики – число, показывающее, во сколько раз напряженность электростатического поля в однородном диэлектрике меньше, чем напряженность в вакууме ОТНОСИТЕЛЬНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ СРЕДЫ
21
Диэлектрики Уменьшение напряженности электростатического поля в диэлектрике приводит к тому, что сила взаимодействия точечных зарядов q 1 и q 2, находящихся в диэлектрике на расстоянии r друг от друга, уменьшается в ε раз:
22
Полупроводники – вещество, в котором количество свободных зарядов зависит от внешних условий (температура, напряженность электрического поля) ПОЛУПРОВОДНИК
Сферы применения
Область применения подобного клея поистине широка. Допустим, там, где работа паяльником невозможна, из-за слишком маленьких размеров деталей или восприимчивости их к высоким температурам, он просто незаменим.
Наиболее востребованные сферы применения электропроводных клеев и лаков:
- Приклейка и восстановление нитей обогрева на стёклах автомобилей;
- В радиоустройствах — соединение пьезокерамических частей;
- Для соединения диэлектриков, по которым должны проходить электрокоммуникации;
- Для соединения проводников слишком маленького сечения, где горячая пайка попросту невозможна;
- Для «холодной» пайки;
- Восстановление оборванных дорожек в различных устройствах: клавиатуры, пульты, печатные платы и др.;
- Применяется при ремонте высокотехнологичных устройств: телефоны, электронные книги, компьютеры и пр., для прикрепления микросхем и кристаллов к платам;
- Выступает в качестве основы под эмаль или краску с токопроводными свойствами;
- Восстанавливает токопроводность на повреждённых участках различных устройств;
- Используется при монтаже и ремонте электрических систем обогрева, «тёплых» полов.
Безусловно, что возможности клеев и лаков, способных проводить ток, куда более широкие, но и приведённый список вполне способен впечатлить размахом возможностей подобного состава.
Действия тока
Поговорим теперь о том, какое действие оказывает электрический ток. За счёт чего он получил такое широкое применение в быту и технике?
Можно выделить три основных действия электрического тока:
1. Тепловое. При прохождении тока проводник нагревается. Это одно из самых главных действий тока, которое используется человеком. Самый простой пример – некоторые бытовые обогреватели (Рис. 5).
Рис. 5. Электрообогреватель (Источник)
2. Химическое. Проводник может изменять химический состав при прохождении по нему тока. В частности, при помощи электрического тока добывают некоторые металлы в чистом виде, выделяя их из различных соединений. К примеру, таким образом получают алюминий (Рис. 6).
Рис. 6. Электролизный цех алюминиевого завода (Источник)
3. Магнитное. Если по проводнику течёт ток, то магнитная стрелка вблизи такого проводника изменит своё положение.