Как человек использует солнечную энергию?
Можно выделить две группы систем, которые используются человеком для преобразования энергии солнца в тепловую и электрическую. Это пассивные и активные системы.
Благодаря своей конструкции, пассивные системы достигают максимально выгодного использования световой энергии. В результате, за счёт снижения расходов на коммунальные расходы такие дома себя быстро окупают. Эти строения независимы в энергетическом плане и не загрязняют окружающую среду.
отопление домаИспользование активных систем распространено значительно шире, чем пассивных.
Тепловые коллекторы
Эти устройства используют излучение солнца для преобразования его в тепло. Можно выделить следующие основные виды коллекторов:
- Вакуумные. Сфера их использования, как и у плоских. Но они используются, когда требуется горячая вода более высокой температуры. В них трубки теплообменника находятся в вакууме внутри стеклянных трубок. Внутри циркулирует теплоноситель. Как правило, такие установки делаются на производстве, а не в домашних условиях. Они функционируют круглый год, даже в российском климате;
- Воздушные. Сфера использование таких устройств – это воздушное отопление и осушительные установки. Могут использоваться при температуре на улице не ниже 5─10 градусов Цельсия;
- Интегрированные коллекторы. Наиболее простая конструкция. Это специальные баки с теплоизоляцией, где нагревается вода. В дальнейшем она используется на хозяйственные нужды.
При этом они не работают по ночам, имеют низкий КПД и довольно высокую стоимость.
Солнечные электростанции
В тех регионах мира, где высокая солнечная инсоляция, делают не просто одиночные гелиостанции, а настоящие электростанции промышленного масштаба. Они вырабатывают электричество, объёма которого хватает для обеспечения энергией небольших населённых пунктов. Многие южные страны уже имеют большой процент использования солнечной энергии в своих национальных энергосистемах. Солнечные электростанции вырабатывают электричество или горячую воду. То есть, работают как батареи и коллекторы. К примеру, власти Калифорнии (США) собираются до 2020 года довести долю выработки электричества с гелиоэлектростанций в энергосистеме штата до 30%.
Солнечная электростанция
Электротранспорт на солнечных батареях
В них гелиопанели устанавливаются на поверхность кузова и заряжают аккумуляторы. Те, в свою очередь, обеспечивают питание электромотора. Использование батарей в серийных моделях ограничивается тем, что их используют для питания отдельных узлов автомобиля. Подробнее читайте в статье «Солнечная энергия в автомобилестроении».
Прочие направления
Ниже приводятся ещё некоторые примеры того, как человек использует солнечную энергию. Все перечисленные предметы существуют в исполнении, работающем от гелиобатарей:
- Термометр;
- Детские игрушки;
- Фонтан;
- Power bank на солнечных батареях для зарядки различных гаджетов;
- Всевозможные светильники;
- Походные солнечные батареи;
- Радиоприёмник;
- Двигатель;
- Есть даже самолёт на солнечных батареях.
Перспективы развития
Каковы дальнейшие возможности использования энергии Солнца на Земле? На сегодняшний день этому альтернативному комплексу пророчат большое будущее.
Перспективы солнечной энергетики радужны. Ведь уже сегодня в этом направлении идут огромные по своим масштабам работы. Каждый год в различных странах мира появляется все больше и больше солнечных электростанций, размеры которых поражают своими техническими решениями и масштабами. Кроме того, специалисты данной отрасли не прекращают проводить научные исследования, цель которых – многократное увеличение коэффициента полезного действия используемых на таких установках фотоэлементов.
Развитие солнечной энергетики идет достаточно высокими темпами. Люди серьезно озабочены проблемой истощения природных ресурсов и занимаются выявлением альтернативных источников тепла и света. Такое решение позволит предупредить неизбежный для человечества энергетический кризис, а также надвигающуюся экологическую катастрофу.
Источники
- https://habr.com/post/393007/
- https://akbinfo.ru/alternativa/ispolzovanie-jenergii-solnca-na-zemle.html
- https://altenergiya.ru/sun/istochnik-solnechnoj-energii.html
- https://Energo.house/sol/ispolzovanie-energii-solntsa-na-zemle.html
- https://akbinfo.ru/alternativa/ispolzovanie-solnechnoj-jenergii.html
- https://obrazovaka.ru/fizika/ispolzovanie-energii-solnca-na-zemle.html
- https://VashUmnyiDom.ru/elektropitanie/alternativnaya-energiya/solnechnaya-elektrostanciya.html
- https://akbinfo.ru/alternativa/solnechnye-jelektrostancii.html
- https://www.syl.ru/article/306035/primeryi-ispolzovaniya-energii-solntsa-na-zemle-solnechnyie-elektrostantsii-solnechnaya-energetika
Размещение и типы солнечных панелей
Такие панели можно размещать где угодно
Важно учитывать лишь большое количество солнечного света, которое должно без преград попадать на поверхность солнечной панели. Хорошим вариантом будут солнечные батареи для дома
Говоря попросту, это фото-пластины, которые устанавливаются либо на крыши загородных или многоквартирных домов.
Так же успешно применяются тонкоплёночные панели для преобразования солнечных лучей. Их разительным отличаем, является толщина, это даёт возможность размещать подобные панели практически в любом месте. Но коэффициент полезного действия у них на порядок ниже, чем у фото-пластин. Поэтому использование тонкоплёночных панелей будет целесообразно исключительно при небольшой поверхности для установки, например на балконе обычного многоэтажного дома или на крышке портативного компьютера.
Преобразование солнечной энергии в электричество
Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.
Фотовольтарика
В этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.
Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.
Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.
А вот как устроен отдельный модуль солнечной панели:
Гелиотермальная энергетика
Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.
Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.
Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.
Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.
Солнечный свет концентрируется на башне
Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.
Солнечные аэростатные электростанции
Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.
Сама установка состоит из 4 основных частей:
- Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
- Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
- Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
- Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.
Принцип работы солнечной электростанции в домашних условиях
Солнечная электростанция – это система состоящая из панелей, инвертора, аккумулятора и контроллера. Солнечная панель трансформирует лучистую энергию в электричество (как было сказано выше). Постоянный ток попадает в контроллер, который распределяет ток по потребителям (например, компьютер или освещение). Инвертор преобразовывает постоянный ток в переменный и обеспечивает работу большинства электрических бытовых приборов. В аккумуляторе накапливается энергия, которая можно расходовать в темное время суток.
Видео описание
Наглядный пример расчетов, показывающий, сколько панелей нужно для обеспечения автономного энергоснабжения, смотрите в этом видеоролике:
https://youtube.com/watch?v=ID34smUuqdA
Как солнечная энергия используется для получения тепла
Гелиосистемы применяются для нагревания воды и отопления жилища. Они могут давать тепло (по желанию владельца) даже тогда, когда отопительный сезон закончится, и обеспечивать дом горячей водой бесплатно. Простейшее устройство представляет собой металлические панели, которые устанавливают на крыше дома. Они аккумулируют энергию и согревают воду, которая циркулирует по скрытым под ними трубам. Функционирование всех гелиосистем основано на этом принципе, несмотря на то, что конструктивно они могут отличаться друг от друга.
Солнечные коллекторы состоят из:
- бака-аккумулятора;
- насосной станции;
- контроллера;
- трубопроводы;
- фиттингов.
По типу конструкции различают плоские и вакуумные коллекторы. У первых дно покрыто теплоизоляционным материалом, а жидкость циркулирует по стеклянным трубам. Вакуумные коллекторы отличаются большой эффективностью, потому что теплопотери в них сведены к минимуму. Этот тип коллектора обеспечивает не только отопление солнечными батареями частного дома – его удобно использовать для систем горячего водоснабжения и подогрева бассейнов.
Принцип действия солнечного коллектораИсточник 21ek.ru
Популярные производители солнечных батарей
Чаще всего на прилавках встречается продукция компаний Yingli Green Energy и Suntech Power Ко. Также популярностью пользуются панели HiminSolar (Китай). Их солнечные батареи производят электроэнергию даже в дождливую погоду.
Производство солнечных батарей налажено и у отечественного производителя. Этим занимаются такие компании:
- ООО «Хевел» в Новочебоксарске;
- «Телеком-СТВ» в Зеленограде;
- «Sun Shines» (ООО «Автономные Системы Освещения») в Москве;
- ОАО «Рязанский завод металлокерамических приборов»;
- ЗАО «Термотрон-завод» и другие.
По стоимости всегда можно найти подходящий вариант. Например в Москве на солнечные батареи для дома стоимость будет варьироваться от 21 000 до 2 000 000 руб. Стоимость зависит от комплектации и мощности устройств.
Солнечные батареи не всегда плоские – есть ряд моделей, которые фокусируют свет в одной точкеИсточник pinterest.com
Этапы монтажа батарей
- Для установки панелей выбирается самое освещенное место – чаще всего это крыши и стены зданий. Чтобы устройство функционировало максимально эффективно, панели монтируются под определенным углом к горизонту. Учитывается также уровень затемненности территории: окружающие предметы, которые могут создавать тень (постройки, деревья и т. п.)
- Устанавливаются панели при помощи специальных крепежных систем.
- Затем модули соединяются с аккумулятором, контроллером и инвертором, и производится наладка всей системы.
Для монтажа системы всегда разрабатывается персональный проект, который учитывает все особенности ситуации: как будет выполняться установка солнечных батарей на крыше дома, цена и сроки. В зависимости от вида и объема работ, все проекты рассчитываются в индивидуальном порядке. Клиент принимает работу и получает на нее гарантию.
Установка солнечных батарей должна производиться профессионалами и с соблюдением мер безопасностиИсточник pinterest.ca
Как итог – перспективы развития солнечных технологий
Если на Земле максимально эффективной работе солнечных батарей мешает воздух, который в известной мере рассеивает излучение Солнца, то в космосе такой проблемы не существует. Учеными ведется разработка проектов гигантских орбитальных спутников с солнечными батареями, которые будут работать 24 часа в сутки. От них энергия будет передаваться на наземные приемные устройства. Но это дело будущего, а для уже существующих батарей усилия направлены на повышение энергоэффективности и уменьшение размеров устройств.
Сферы использования солнечной энергии
Область использования энергии солнца довольно широкая и постоянно расширяется. Здесь можно упомянуть даже такую простую вещь, как летний душ баком наверху. Он нагревается от солнца и можно мыться. Использование гелиосистем для частных домов ещё совсем недавно казалось фантастикой, а сегодня стали реальностью. Сейчас выпускается много солнечных коллекторов для обогрева бытовых и производственных помещений. Уже есть модели, которые способны работать при отрицательных температурах. Кроме того, полно всевозможных мобильных power bank на солнечных батареях для зарядки мобильных гаджетов, калькуляторов, часов и другой техники с питанием от фотоэлектрических панелей.
Энергия солнца на сегодняшний день используется в таких сферах народного хозяйства, как:
- Энергоснабжение частных домов, пансионатов, санаториев;
- Энергоснабжение населённых пунктов, находящихся вдали от городской инфраструктуры;
- Сельское хозяйство;
- Космонавтика;
- Экотуризм;
- Уличное освещение, декоративная подсветка на дачных участках;
- Жилищно-коммунальное хозяйство;
- Зарядные устройства.
Солнечная электростанция
Солнечная энергетика в России
На сегодняшний день в нашей стране уже построено около 1,2 ГВт солнечных электростанций.
Уровень инсоляции варьируется от 810 кВт*час / кв. м в год в отдаленных северных районах до 1400 кВт*час / кв. м в год в южных районах, в Сибири и на Дальнем Востоке.
Московская и Ленинградская области имеют репутацию пасмурных регионов. Однако выработка энергии там составляет порядка 1000 кВт*ч на кВт установленной мощности солнечной генерации в год. Это ниже, чем в других, более благоприятных для развития отрасли регионах России, но сопоставимо с показателями, например, Германии, которая входит в пятерку мировых лидеров по установленной мощности солнечной генерации.
«С точки зрения окупаемости, Санкт-Петербург и Ленинградская область считаются более выгодными для использования электроэнергии от солнечных установок. В регионе достаточно высокие тарифы для юридических лиц, представителей малого и среднего бизнеса – до 10 рублей за кВт*ч, что позволяет быстро окупить вложения в солнечную генерацию и начать экономить на электроэнергии», — комментирует Усачев.
Среди всех секторов ВИЭ солнечная энергетика наиболее развита в России, говорит Сергей Пикин, директор Фонда энергетического развития. Он связывает это с тем, что в стране есть как минимум два поставщика оборудования с собственными разработками. И благодаря наличию конкуренции и развитию отрасли в целом стоимость выработки солнечной энергии значительно снизилась за последние несколько лет, причем по всему миру.
Однако даже этого пока что недостаточно для прорывного развития солнечной энергетики в России, считает Пикин. По установленным мощностям этот способ выработки энергии занимает всего 1-2 %, а по выработке энергии и вовсе стремится к нулю из-за технических перебоев.
- По словам директора фонда, ВИЭ для России — это прежде всего развитие энергомашиностроительного комплекса с прицелом на будущее для внутреннего рынка. «На экспортных рынках нас особо нигде не ждут, потому что Китай производит самое дешевое (на данный момент) оборудование».
- Более того, отмечает эксперт, сами по себе ВИЭ как способ получения энергии у нас в стране не очень актуальны, потому что в России наблюдается переизбыток энергетических мощностей, которые к тому же многократно дешевле солнечной или любой другой «зеленой» энергетики.
- Наконец, есть вероятность, что с 2025 года финансирование программы поддержки ВИЭ будет урезано вдвое: с 400 до 200 млрд рублей. Об этом, согласно источникам «Ведомостей», заявил глава Минэкономразвития Максим Решетников на совещании 17 октября этого года.
Против этих нововведений выступили крупнейшие компании-популяризаторы «зеленой энергетики» в России: «Роснано» и ГК «Ренова», владеющая долей в «Хевеле».
Татьяна Андреева, проектный менеджер немецкой компании eclareon GmbH, консультирующей по вопросам возобновляемой энергетики, напротив, дает оптимистичный прогноз. Она считает, что отрасль сделала огромный шаг за последние четыре года.
«Это, несомненно, большое достижение и показатель как успешности работы схем поддержки ВИЭ в России, так и повышающейся заинтересованности большого бизнеса и инвесторов в таких проектах. Стоит учесть, что в официальную статистику не попадают частные фотоэлектрические станции, а ведь их совокупная установленная мощность может исчисляться десятками мегаватт. Туда входят и мелкие частные системы по 1-5 кВт, и более мощные электростанции по несколько десятков киловатт».
Особенно, уточняет Андреева, солнечная энергетика привлекательна для инвесторов и муниципалитета в удаленных регионах и изолированных от ЕЭС России областях, где генерация энергии традиционно осуществляется посредством дизельных генераторов.
Так, например, в 2013 году была запущена первая в России автономная дизель-солнечная электростанция мощностью 100 кВт в селе Яйлю Турочакского района Республики Алтай. В таких проектах, по мнению Антона Усачева, солнечные электростанции окупаются за счет экономии на дизельном топливе и логистических расходах.
Новое направление энергетического комплекса
На сегодняшний день человечество внедряет в практику и успешно развивает устройства, позволяющие ему добывать свет и тепло без использования угля, нефти и газа. В народном хозяйстве многих государств возникла новая подотрасль – солнечная энергетика. Это одно из направлений нетрадиционной энергетики. В ее основе лежит принцип непосредственного использования излучения Солнца.
Цель, которую преследует солнечная энергетика, – получение столь необходимого для человечества тепла и света. Новую отрасль порой называют гелиоэнергетикой. Ведь Helios в переводе с греческого – Солнце.
Какие есть проблемы при использовании солнечной энергии?
Казалось бы, всё прекрасно и нужно переходить на использование энергии солнца. Оказывается, есть ряд проблем. Каких же? Основная проблема заключается в том, что поступающая энергия сильно рассеивается. На один квадратный метр попадает примерно 100─200 ватт. Точное количество зависит от расположения этого места на Земле. Кроме того, Солнце светит днём, и мощность в это время достигает 400—900 ватт на квадратный метр. А ночью энергии не поступает, а пасмурную погоду поступает значительно меньше. То есть, в какие-то моменты нужно собирать весь этот энергетический поток и накапливать. А когда солнечный свет на землю не падает, использовать накопленную энергию.
Собирают энергию солнца разными способами. Естественным считается сбор тепла для нагрева теплоносителя, а затем его использование в системе отопления дома или в подаче горячей воды. И также распространённый способ преобразования солнечной энергии – это получение электроэнергии. Все эти установки выпускаются как фабрично, так и самостоятельно своими руками.
Некоторые умельцы делают обогреватели в обычном окне квартиры или дома. Получается дополнительный обогрев помещения. А также распространены коллекторы и гелиосистемы для выработки электричества в частных домах. Однако применение тепловых коллекторов ограничивается климатическими условиями. А солнечные панели для преобразования солнечной энергии в электричество пока имеют низкий КПД.
Но в целом гелиосистемы являются очень перспективной сферой энергетики. Стоит ещё немного подрасти в цене энергоносителям, и они станут очень востребованы. На Земле много районов, где практически постоянно светит солнце. Это степи, пустыни. При установке там солнечных электростанций и получения электроэнергии можно обустроить эту землю и сделать её плодородной. Энергия будет расходоваться на подвод воды и нужды населения.
Развитие альтернативной энергетики в странах СНГ
А в октябре того же года компанией Activ Solar была запущена еще одна солнечная электростанция «Охотниково» и также на территории Крыма. Ее мощность составила 80 МВт. «Охотниково» также получила статус крупнейшей, но уже на территории Центральной и Восточной Европы. Можно сказать, что альтернативная энергетика в Украине сделала громадный шаг на встречу безопасной и неиссякаемой энергии.
В Казахстане же ситуация выглядит немного иначе. В основном, развитие альтернативной энергетики в этой стране происходит лишь в теории. Потенциал у республики огромный, но раскрыть его полностью пока не получается. Конечно, правительство занимается этим вопросом, и даже был разработан план по развитию альтернативной энергетики в Казахстане, вот только доля энергии, получаемой от возобновляемых источников, в частности от солнца, будет составлять не более 1% в общем энергобалансе стране. К 2020 в планах запуск всего 4 солнечных электростанций, общая мощность которых будет составлять 77 МВт.
Альтернативная энергетика в России также развивается немалыми темпами. Но, как заявил заместитель министра энергетики, уклон в этой области делается в основном на дальневосточные регионы. Например, в Якутии суммарная выработка 4 солнечных электростанций, работающих в самых отдаленных северных поселках, составила более 50 тыс. кВт*ч. Это позволило сэкономить более 14 тонн дорого дизельного топлива. Еще одним примером использования солнечной энергии служит строящийся в Липецкой области многопрофильный авиационный комплекс. Электроэнергию для его работы будет вырабатывать первая СЭС, построенная также на территории Липецкой области.
Все это позволяет сделать следующий вывод: сегодня все страны, даже не самые развитые, стремятся максимально приблизиться к заветной цели: использованию альтернативных источников энергии. Ведь потребление электроэнергии растет с каждым днем, с каждым днем увеличивается количество вредных выбросов в окружающее среду. И многие уже понимают, что наше будущее и будущее нашей планеты зависит только нас.
Р.Абдуллина
Украина делает ставку на энергию Солнца
https://youtube.com/watch?v=LIWRbBo06FM
Что такое солнечная энергия
Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.
Солнечная энергия является источником возобновляемой и экологически чистой энергии.
Как можно оценить величину солнечной энергии
Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.
Распределение солнечного излучения на карте планеты
Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.
Принцип преобразования инфракрасных волн
Каким образом происходит процесс использования энергии Солнца на Земле? Как и любое другое подобное действие, он осуществляется по принципу прямого превращения. Для этого нужна только специальная поверхность. Попадая на нее, солнечный свет проходит процесс превращения в энергию. Для получения тепла в этой схеме должен быть задействован коллектор. Он поглощает инфракрасные волны. Далее в устройстве, использующем энергию Солнца, непременно присутствуют накопители. Для нагревания конечного продукта устраивают специальные теплообменники.
При получении электрической энергии используются специальные фотоэлементы. Они принимают лучи света на свою поверхность. Далее солнечные установки производят из них электричество.
Преобразование солнечной энергии в электрическую
Существует две разновидности электричества — хорошее и плохое. Разница, я думаю, в том, что одно из них можно получать в течение длительного времени, но с большими затратами, другое дешевле, но его мало. Стивен Ликок (1869—1944) Несомненно, электроэнергия является наиболее удобной для использования формой энергии. Основная доля электричества вырабатывается на земном шаре с помощью электромагнитных генераторов, приводимых в действие тепловыми машинами того или иного вида. В предыдущей главе мы видели, что солнечные системы, в состав которых входят тепловые машины, обычно малоэффективны. (Исключение составляют системы с использованием концентраторов.) Как уже говорилось, возможности этих систем ограничиваются наибольшей и наименьшей температурами цикла машины. Применение концентраторов позволяет увеличить получаемую механическую мощность до 100 Вт на 1 м2 площади коллектора. Однако ввиду своей сложности системы с концентраторами применяются лишь для привода маломощных электрических генераторов в десятки—сотни ватт. В этой главе мы рассмотрим и другие способы преобразования солнечной энергии в электрическую, а также возможности повышения их эффективности. Для этого необходимо как-то обойти ограничения второго начала термодинамики, и это не просто вопрос замены механической машины другим устройством. Взаимный переход электрической и механической форм энергии в принципе может протекать без потерь, например, в идеальном соленоиде или в двигателе. Электрические машины, преобразующие одну форму энергии в другую, обычно весьма эффективны: их к. п. д. иногда достигает 90% (для больших машин, где потери обратно пропорциональны размерам машин). Поэтому пределом совершенства не без оснований считают машину с к. п. д. 100%, допускающую обратимое преобразование. Но такая машина в принципе не отличается от идеальной обратимой механической машины, поэтому здесь также вступает в силу второе начало термодинамики. Как известно, некоторые термодинамические ограничения проявляются при непрерывном процессе преобразования тепловой энергии в механическую. При использовании солнечной энергии подобных ограничений удалось бы избежать в том случае, если бы отпала необходимость в промежуточной стадии превращения радиации в теплоту. Подобную возможность мы также исследуем, но сначала остановимся на обычных системах, которые могли бы работать ближе к пределам термодинамических ограничений, чем механические системы, или допускали бы более простую и экономичную реализацию. В этой главе мы рассмотрим сначала некоторые принципы и устройства для получения энергии, в которых исходной является тепловая стадия. Преимущества и недостатки теоретически более перспективных устройств, работающих без тепловой стадии, обсуждаются в следующей главе. |
СОДЕРЖАНИЕ КНИГИ: Солнечная энергия для человека
Фотоэлектрический (или фотовольтаический) метод преобразованиясолнечной энергии в электрическую является в настоящее время наиболее разработанным в научном и практическом плане.
Поэтому при термодинамическом преобразовании этой энергии в электрическую следует стремиться к тому, чтобы изменения тепловых режимов не вносили б) приемную систему, преобразующую энергию солнечного излучения в тепло, которое передается теплоносителю
Фотоэлектрический (или фотовольтаический) метод преобразованиясолнечной энергии в электрическую является в настоящее время наиболее… Альтернатива.
Второе направление использования солнечной энергии — преобразование ее в электрическую энергию. Если закрыть кристалл кремния тончайшим, прозрачным для света слоем металла, то поток фотонов — частиц света, проходя сквозь слой металла…
строительство крупных электростанций с фотоэлектрическим преобразованием солнечной энергии вэлектрическую, соединенных с энергосистемой или гидроаккумулирующей станцией
Прямое преобразование химической энергии в механическую, происходит, например, при мышечной деятельности живых существ. При прямом преобразовании химической энергии в электрическую повышается КПД и экономятся материалы.
Необходимо отметить, что первый проект, предусматривающий крупное масштабное преобразование космического солнечного излучения в электрическую энергию для питания двигателей гелиора-кетоплана, был предложен и разработан В. П. Глушко в 1928-1929 гг.
Преобразованиеэнергии солнечного излучения в электрическую энергию еще очень нев’елико в сравнении с преобразованием других видов энергии — воды, пара, ветра.
Исследование солнечной энергии
Почему Солнце светит и не остывает уже миллиарды лет? Какое «топливо» дает ему энергию? Ответы на этот вопрос ученые искали веками, и только в начале XX века было найдено правильное решение. Теперь известно, что, как и другие звезды, светит благодаря протекающим в его недрах термоядерным реакциям.
Если ядра атомов лёгких элементов сольются в ядро атома более тяжелого элемента, то масса нового окажется меньше, чем суммарная масса тех, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло. Такая реакция синтеза атомных ядер может происходить только при очень высоком давлении и температуре свыше 10 млн. градусов. Поэтому она и называется термоядерной.
Основное вещество, составляющее Солнце, — водород, на его долю приходится около 71% всей массы светила. Почти 27% принадлежит гелию, а остальные 2% — более тяжелым элементам, таким как углерод, азот, кислород и металлы. Главным «топливом» Солнца служит именно водород. Из четырех атомов водорода в результате цепочки превращений образуется один атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6×1011 Дж энергии! На Земле такого количества энергии хватило бы для того, чтобы нагреть от температуры 0ºC до точки кипения 1000 м3 воды.
Интересные факты о Солнце
Для любого объекта, излучающего тепло, можно посчитать отношение мощности к его объему. Оказывается, что удельная мощность Солнца примерно в тысячу раз меньше, чем удельная мощность человеческого организма! Это означает, что огромный объем выделяемого светилом тепла в первую очередь объясняется его гигантскими размерами.
Периодически всплески солнечной активности приводят к геомагнитным бурям. Мощнейшая из них произошла в 1859 г. В результате на Земле перестала работать телеграфная связь, а северное сияние наблюдалось даже над Кубой.
Сейчас общепризнанна теория, что Солнце образовалось из газопылевого облака. Однако откуда появилось само облако? Ученые предполагают, что оно является остатком предыдущих звезд. Химический анализ показывает, что Солнце является звездой уже третьего поколения. Это значит, что вещество, из которого состоит светило, ранее входило в состав двух других звезд, уже прекративших существование.
Хотя большинство планет вращаются вокруг Солнца в плоскости эклиптики, экватор самой звезды не совпадает с этой плоскостью, а наклонен на 7°. Эту аномалию до сих пор не удалось объяснить. Возможно, причиной этого является существование ещё одной планеты в Солнечной системе, чья орбита лежит не в плоскости эклиптики, а под углом к ней. Ряд наблюдений подтверждает существование Девятой планеты, но пока что говорить об ее открытии преждевременно.
Список использованных источников