ON-OFF выключатель нагрузки на NE555.
ON-OFF выключатель нагрузки на NE555.
ON-OFF Selector NE555 Project
В предыдущей статье я написал, что подготовил материал по двум схемам выключателей ON/OFF для управления нагрузкой с помощью одной кнопки, поэтому данная статья является как бы продолжением этой темы. В этом варианте ON-OFF селектор выполнен на таймере NE555, принципиальная схема ниже:
Лейка создавалась с использованием исходных изображений, которые вы сможете найти в архиве, но это не полные копии, плата была малость переделана, изменены положения некоторых элементов и немного уменьшена в размерах. Еще один нюанс, в архиве есть вторая принципиальная схема именно от картинок плат исходников, не знаю по каким соображения в качестве C1 поставлена электролитическая емкость 0,47mF. Пересмотрел кучу информации по данной схеме, в которой многие пишут, что достаточно будет использовать неполярный конденсатор емкостью 100n вместо 0,47mF, поэтому в лейке применил макрос обычного с расстоянием между ножками 5 mm, но это не помешает воткнуть на это место и 0,47 если захотите. Вид платы ON-OFF выключателя нагрузки следующий:
ON-OFF Selector NE555 LAY6
ON-OFF Selector NE555 LAY6 foto
Список элементов ON-OFF селектора:
• 1N4004 – 1 шт.• Светодиод 5 mm – 1 шт.
Резисторы 0,25W:
• 10k – 3 шт.• 1k – 1 шт.• 910R – 1 шт.
• Реле с катушкой на 9 Вольт – 1 шт.• Малогабаритная кнопка без фиксации – 1 шт.• Разъемы — на ваше усмотрение, плата рассчитана на расстояние между ножками 5 mm. Средний разъем служит для подключения внешней кнопки управления.
И последнее по данной схеме, её можно запитать напряжением, например, 5 Вольт, при этом достаточно будет заменить реле на пятивольтовое и пересчитать номинал резистора в цепи светодиода.
Размер архива с материалами по ON/OFF выключателю на NE555 – 0,6 Mb.
Проверка работоспособности
Для своих самоделок NE555 можно выпаять из старого, ненужного или уже неисправного оборудования. Она встречается в пультах управления, терморстатах, терморегуляторах, ёлочных гирляндах, светомузыкальных и различных устройствах с временной задержкой включения, автомобильных тахометрах и др. Если повезло и Вам удалось найти её, то перед использованием в своих электронных конструкциях, необходимо определить её на работоспособность.
Проверить мультиметром не получится. Поэтому для этих целей обычно используют простенький тестер – он же «мигалка на светодиодах». Если после подключения питания оба диода поочередно помигивают, то NE-шка рабочая. В противном случае – неисправна.
Аналоги микросхемы NE555
Микросхема 555, аналог которой в России был назван КР1006ВИ1, представляет интегральное устройство.
Смотреть галерею
Среди рабочих блоков следует выделить RS-триггер (DD1), компараторы (DA1 и DA2), усилительный каскад на выходе, основанный на двухтактной системе и дополняющий транзистор VT3. Назначение последнего заключается в сбросе задающего время конденсатора при использовании агрегата в роли генератора. Сбрасывание триггера происходит при подаче логической единицы (Юпит/2…Юпит) на входы R.
В случае сброса триггера на выходе устройства (вывод 3) будет наблюдаться низкий показатель напряжения (транзистор VT2 открыт).
Режимы работы NE555
Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.
Одновибратор
Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле: t=1,1*R*C.
По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.
Во время разработки схем нужно учесть 2 нюанса:
- Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
- Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.
На работу генератора одиночных импульсов можно влиять извне двумя способами:
- подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
- пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.
Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.
Мультивибратор
Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке. В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам:
Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7
Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.
Прецизионный триггер Шмитта с RS-триггером
Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.
Описание
Созданию микросхемы NE555, реализованному в 1970 году специалистами компании Signetics (США), предшествовали теоретические разработки Ганса Камензинда, который сумел доказать важность, не имевшего на тот момент времени аналогов, изобретения. Таймер NE555 явился первой и единственной «таймерной» микросхемой, доступной рядовым потребителям, которая позволяла собирать миниатюрные и недорогие устройства за счет плотной компановки элементов в кристалле микросхемы
Основные параметры ИМС серии 555
Микросхема NE 555 состоит из пяти функциональных узлов:
- делителя напряжения;
- двух прецизионных компараторов;
- триггера;
- транзистора с открытым коллектором на выходе
РИСУНОК 1
Устройство микросхемы NE 555
Параметры работы микросхемы во многом определяются качеством сборки аналогов. Для таймера NE 555 диапазон рабочих температур составляет: 0° — 70° С, а для SE 555 он шире: от -55°С до +125°С.
Существенное влияние на точность работы схемы NE555оказывает вариант исполнения: гражданский или «военный». У последнего выше точность и продолжительнее ресурс работы. Корпус выполнен из керамики или металла.
Питание микросхем
Рекомендуемый интервал питания микросхем 555 и их аналогов лежит в интервале 4,5 V — 16V. Для микросхемы с индексом SE может достигать 18V.
Потребляемый ток в норме составляет 2-5 мА, при пиковых значениях: 10-15 мА.
Выходной ток у китайских аналогов и отечественной микросхемы КР1006ВИ1 составляет не более 100 мА. У оригинальных импортных микросхем NE/SE 555 он около 200 мА.
Преимущества и недостатки микросхемы
У микросхемы 555 «таймерного» типа существует множество преимуществ. Именно поэтому она популярна столь долгое время.
Внутренний делитель задает верхний и нижний порог срабатывания для двух встроенных компараторов. Это одновременно является достоинством, та как не требуется вводить дополнительные элементы, одновременно это и недостаток: пороговым напряжением микросхемы нельзя управлять.
Кроме этого в процессе эксплуатации выявился и еще один недостаток: при каждом переключении возникает паразитный сквозной ток, достигающий в пиковых значениях силы в 400 мА. За счет этого увеличиваются тепловые потери. Микросхема нагревается.
Как избавиться от недостатков
Решение проблемы давно найдено. Оно заключается в установке между проводом вывода управления и общим проводом полярного конденсатора небольшой емкости (до 0,1 мкФ). Этот конденсатор стабилизирует работу микросхемы при запуске.
Помехоустойчивость работы микросхемы достигается установкой в цепь питания неполярного конденсатора емкостью 1 мкФ. Вариации микросхемы NE 555, собранные на КМОП-транзисторах, не несут в себе указанных недостатков. Для их стабильной работы нет необходимости устанавливать внешние конденсаторы.
Схема импульсного источника питания двухполярного напряжения
Он собран на одной микросхеме NE555 (рис.1), которая служит задающим генератором прямоугольных импульсов. Генератор собран по классической схеме. Частота следования выходных импульсов генератора 6,474…6,37 кГц. Она изменяется в зависимости от напряжения питания, которое может быть 3,6 В (3 аккумулятора в кассете питания) и 4,8 В (при 4 аккумуляторах в кассете). В схеме импульсного источника питания были использованы аккумуляторы ENERGIZER типоразмера АА емкостью 2500 мА-ч. Прямоугольные импульсы с выхода 3 МС 555 через ограничивающий резистор R5 подаются на базу транзисторного ключа VT1, нагрузкой которого является дроссель L1 индуктивностью 3 мГн. При резком запирании этого транзистора в дросселе L1 наводится большая ЭДС самоиндукции. Полученные таким образом высоковольтные импульсы поступают на два параллельных выпрямителя с удвоением напряжения, на выходах которых будут два разнополярных напряжения ±4,5…15 В.
Эти напряжения можно регулировать, изменяя скважность выходных импульсов с помощью потенциометра R1. Постоянное напряжение с движка R1 попадает на вывод 5 МС555 и меняет скважность, а следовательно, и выходные напряжение обоих выпрямителей
Выходные напряжения этого источника будут идеально равны только в том случае, когда скважность импульсов генератора будет равна 2 (длительность импульсов равна паузе между ними)
При другой скважности импульсов выходные напряжения источника в точках А и Б будут несколько разниться (до 1…2 В). Столь небольшая разница обеспечивается применением в схеме импульсного источника питания выпрямителей удвоения, конденсаторы которых заряжаются как положительными, так и отрицательными импульсами
Этот недостаток компенсируется простотой и дешевизной схемы.
В этой схеме импульсного источника питания можно использовать дроссели от электронных балластов негодных экономичных ламп дневного света. Разбирая эти лампы, старайтесь не повредить спиральные или U-образные стеклянные трубки, так как они содержат ртуть. Делать это лучше на открытом воздухе. На некоторых дросселях, особенно импортных, нанесена величина индуктивности в мГн (2.8, 2.2, 3.0, 3,6 и т.д.). Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.1 приведены в табл.1.
Примеры практического использования
Область практического применение таймера широка, в рамках данного обзора полностью раскрыть тему не получится. Но наиболее распространенные примеры разобрать стоит.
В режиме одновибратора на нескольких микросхемах можно построить кодовый замок с ограничением времени набора кода. Другой путь – использование в качестве сигнализатора достижения порогового уровня (освещенности, уровня наполнения ёмкости и т.д.) совместно с различными датчиками.
Watch this video on YouTube
В режиме мультивибратора (астабильный режим) таймер находит широчайшее применение. На нескольких таймерах можно построить переключатель гирлянд с раздельным регулированием частоты мигания, времени включения и времени паузы. Можно применять NE555 как основу для реле времени и формировать время включения потребителей от 1 до 25 секунд. Можно построить метроном для музыканта. Это самый используемый режим микросхемы, и все способы применения описать невозможно.
В качестве триггера Шмитта таймер используется нечасто. Но в бистабильном режиме без частотозадающих элементов NE555 применяют в качестве подавителя дребезга контактов или двухкнопочного выключателя в режиме «старт-стоп». Фактически, используется только встроенный RS-триггер. Также известно о построении на базе таймера ШИМ-регулятора.
Существуют сборники схем, в которых описаны различные варианты применения таймера NE555. В них описаны тысячи способов использования микросхемы. Но пытливому уму конструктора и этого может оказаться недостаточно, и он найдет дополнительное, ещё нигде не описанное использование таймера. Возможности, заложенные разработчиками микросхемы, это позволяют.
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
Что такое триггер, для чего он нужен, их классификация и принцип работы
Что такое компаратор напряжения и для чего он нужен
Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317
Как сделать реле времени своими руками?
Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142
Область применения НЕ555
Возможности микросхемы дают широкий спектр техники, в которой она используется. Мультивибраторы на 555 серии встречаются практически во всех схемах генерации сигналов.
Примером служат различные звуковые и световые оповещающие устройства, детекторы металла, освещенности, влажности или касания. Таймер, заложенный в микросхему, позволяет создавать реле времени, для контроля работы различного оборудования по определенным человеком периодам.
Варианты исполнения в виде триггера Шмитта применяются как фильтрующие преобразователи зашумленных сигналов, для придания им правильной прямоугольной формы. Актуальность подобные схемы имеют и в цифровой технике, в которой используются только два вида импульсов – его наличие и отсутствие.
Практические схемы на основе таймера 555
NE555 схема является неотъемлемой частью электронных проектов. Будь то простой проект таймера NE555, включающий один 8-битный микроконтроллер и некоторые периферийные устройства, или сложный проект, включающий систему на чипах (SoC). Здесь мы рассмотрим некоторые схемы таймера 555, основанные на ИС.
1. Детектор движения с таймером NE555
Эта схема основана на пассивном инфракрасном (PIR) датчике, который автоматически включает устройство, когда кто-то приближается к нему. Его можно использовать для обнаружения кражи или проникновения постороннего лица в запретную зону или здание. Он также может включать свет, когда кто-то приближается к месту, где он установлен. Применения этой схемы включают, среди прочего, системы безопасности, освещение в коридорах и ванных комнатах.
Принципиальная схема детектора движения
2. Таймер со звуком
Этот звуковой таймер основан на четырехоперационном усилителе LM324 и таймере NE555. Время задержки может быть установлено от нескольких секунд до 30 минут. Его также можно использовать как чувствительную к звуку охранную сигнализацию. Также представлена односторонняя разводка печатной платы для таймера со звуком и его компонентов.
Принципиальная схема таймера со звуком
Пайка на печатной плате таймера со звуковым управлением
Компоновка компонентов печатной платы
Загрузите PDF-файлы с макетами печатных плат и компонентов: нажмите здесь
3. Установите схему таймера 555 в моностабильный режим.
Представленная здесь NE555 схема, может действовать либо как простой таймер генерации одиночных импульсов для временных задержек, либо как генератор релаксации, генерирующий стабилизированные формы сигналов с изменяющейся скважностью от 50 до 100%. В этом видео демонстрируется, как настроить схему таймера NE555 в моностабильном режиме
Это позволит светодиоду включаться на определенное время после нажатия кнопки. Время, в течение которого светодиод остается включенным, можно установить другое, изменив сопротивление и емкость в цепи.
Таймер 555 в моностабильном режиме
https://youtube.com/watch?v=Izs-1z-LekE
Аналоги микросхемы
Универсальный таймер вскоре обзавелся функциональными аналогами, которыми стали советские микросхемы из серии КР:
- 1006ВИ1;
- 1008ВИ1;
- 1087ВИ2;
- 1087ВИ3.
Также, микросхема ne555 аналог имеет, например, КР10006ВИ1, то стоит учесть тот факт, что вход сброса R по отношению к установке имеет приоритет. Этот момент почему-то упущен
в техническом описании МС, что является немаловажным фактом при построении электронных схем. В других микросхемах выводы имеют приоритет вплоть до наоборот S над R.
Все выше представленные аналоги таймеров построены на стандартной ТТЛ-логике. Если захотите спроектировать устройства на ne555 с более экономичными показателями, то лучше применить МС из серии КМОП. Таковыми являются устройства:
- ICM 7555 IPA ;
- GLC 555;
- КР1441ВИ1.
Таймеры и реле времени
Схема таймера с индикацией от 1 до 10 секунд или от 1 до 10 мин Матрица из 10 светодиодов служит для индикации интервалов времени от 1 до 10 сек или 1 до 10 мин. Схема может использоваться для определения продолжительности телефонных звонков, времени выдержки в фотографии или времени приготовления пищи. Частота импульсов с выхода генератора, выполненного на… 0 2976 0
Таймер с задержкой 10 минут на основе SN74121 В схеме таймера используется автоколебательный мультивибратор SN74121, который генерирует импульсы с длительностью в 4 сек. Тактовая частота мультивибратора устанавливается резистором R1. Микросхемы U2 и U3 делят входную частоту мультивибратора на 144, что дает, в итоге, временную задержку в 576…
0 1829 0
3 наиболее популярные схемы на основе NE555
Одновибратор
Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1 – 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.
Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:
Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.
Мигание светодиодом на мультивибраторе
Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:
UВЫХ – амплитудное значение напряжения на выводе 3 таймера.
Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.
Реле времени
Схема регулируемого таймера (электронное реле времени) показана на рисунке. С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.
Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.
https://youtube.com/watch?v=8JfN0__HErA
Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.
Микросхемы 555 применяются довольно часто в радиолюбительской практике – они практичны, многофункциональны и очень просты в использовании. На таких микросхемах можно реализовать любую конструкцию – как простейшие триггеры Шмитта с парочкой дополнительных элементов, так и многоступенчатые кодовые замки.
NE555 была разработана уже довольно давно, даже в советских журналах «Радио», «Моделист-конструктор», на аналогах этой микросхемы можно было встретить немало самоделок. На сегодняшний день эта микросхема активно применяется в конструкциях со светодиодами.
Режимы работы устройства
Основные режимы использования микросхемы 555 серии – одновибратор, мультивибратор и триггер Шмитта.
Первый применяется для создания единовременного сигнала заданной длительности при подаче входного напряжения на стартовый контакт чипа.
Второй – для генерации множества автоколебательных импульсов прямоугольной формы.
Третий, благодаря эффекту памяти предыдущего сигнала и трех вариантов исходящих согласно внутренней логики, в системах задержки и цифровых устройствах.
Одновибратор
В этой схеме, при подаче сигнала любой формы на второй вход 555 серии, будет генерироваться импульс на третьем ее выходе. Его длительность зависит от характеристик сопротивления R и емкости C. Вычислить необходимое время действия исходящего сигнала можно по формуле t=1,1*C*R.
Схема одновибратора
Мультивибратор
В отличие от предыдущей схемы, мультивибратору для начала постоянной генерации не нужна подача внешнего сигнала. Достаточно только произвести подключение питания. На выходе импульсы прямоугольной формы с изменением состояния в течение t2 и с периодом действия t1.
Их время рассчитываться от параметров R1 и R2 по формулам:
Период и частота:
Чтобы достичь времени импульса большего, чем время паузы, используют диод, соединяющий катодом 7 контакт микросхемы (разряд), с 6 (останов) через свой анод.
Мультивибратор
Прецизионный триггер Шмитта
Функциональность в рамках инвертирующего прецизионного переключателя в 555 серии обеспечивается наличием двух порогового компаратора и RS — триггера. Напряжение на входе разделяется на три части, при достижении пороговых значений которых и изменяется состояние выдачи сигнала устройством.
Разграничение делается по полярности, причем для переключения достаточно 1/3 общего вольтажа питания любого из полюсов. На выходе, при получении порогового сигнала на входе, возникает импульс, инвертированный полярно относительно изначального. Его уровень постоянен и длится он ровно то время, которое действует инициирующий импульс.
Используется подобная схема в системах, где требуется избавление от излишнего шума и приведение его последовательностей к необходимым пороговым значениям.
Схема триггера Шмитта с графиком выравниваемых уровней сигнала
Таймер на включение — выключения в автомобиле NE 555 (видео)
В автомобиле очень много устройств призванных работать временно, то есть не постоянно а время от времени. Это и различные подогреватели и указатели поворотов (ленивый указатель поворотов) и турботаймеры и устройства включающие камеры заднего хода не сразу, а через какое-то время, то есть с задержкой. Так вот, везде в этих случаях используется таймер, который и задет для исполняющего устройства период его работы или отключения. То есть таймер в машине применяется часто и много где. Мы даже уверены в том, что не все случаи смогли упомянуть и еще несколько вариантов вы можете предложить сами, а может ради них и зашли к нам на страничку. Если это действительно так, то вы здесь как раз и найдете что вам надо, то есть таймер для включения, а равно и отключения исполнительного устройства на машине, в автомобиле.
Таймер включения — отключения в автомобиле на микросхеме NE555
Вначале о самой микросхеме, о сердце нашего таймера. Микросхема выпускается а с 70 годов прошлого века и о том, какими компаниями она выпускалась, сколько штук было выпущено уже можно и не вспоминать. Во-первых, это очень значительная информация, а вследствие этого если даже привести статистику, то она будет сильно искажена. Во-вторых, и так понятно, что если микросхема столь востребована, то мы с вами на верном пути, то есть именно эту микросхему целесообразно применять для построения таймера. Здесь кстати стоит отметить, что эта микросхема как раз и задумывалась как таймер, хотя на само деле применяется часто не совсем по назначению, как в одной из наших статьей «Датчик света на микросхеме». Что же, это лишь снова добавляет значимости и плюсиков нашей микросхеме. Теперь о ее подключении и работе схемы.
Схема таймера включения — отключения в автомобиле
Теперь взгляните на классическую схему подключения микросхемы NE555. 1 ножка это земля, 8 это питание «+». Напряжение питания микросхемы 9-12 вольт вполне подойдет. При этом входом микросхемы можно считать ножки 6 и 7, которые соединены между собой, именно на них формируется потенциал от зарядки электролитического конденсатора. В то время, пока конденсатор заряжается, на выходе микросхемы напряжение равно напряжению питания. При этом получается что верхний светодиод не горит, так как для него плюсовое питание осуществляется с двух сторон, а нижний горит из-за разности потенциалов между его ножек. При этом как только электролитический конденсатор заряжается, то потенциал на 3 ножке, на выходе, становится отрицательным, то есть 3 вывод становится землей. В этом случае уже нижний светодиод гаснет, так как для него теперь с двух сторон «минус», а загорается верхний светодиод.
Вот так работает эта микросхема. Некоторые уже догадались, что заряжается электролитический конденсатор фактически через резистор 1 мОм и 10 кОм, то есть именно от их потенциала, номинала и будет зависеть время зарядки конденсатора, а значит и время срабатывания таймера. В итоге есть два пути изменения время срабатывания таймера. Первый, это изменять номинал резисторов. Второй, изменять емкость конденсатора. Сразу скажем, что изменение емкости конденсатора дает более значимый результат. А вот весь алгоритм срабатывания таймера реализован в самой микросхеме. Вот собственно и вся схема и принцип ее работы. Осталось лишь сказать, что если вам необходимо управлять большими токами, то здесь как раз и используется сборка на транзисторе (можно взять КТ815Б) и реле 12 вольт, которая так неумело подрисована к рисунку. Само собой реле можно использовать с нормально замкнутым или разомкнутыми контактами, а значит на выходе можно получить включение или отключение. То есть нужным образом коммутировать цепь. Это как раз и будет подтверждать наш заголовок, что микросхема – таймер может обеспечивать как включение, так и отключение каких – либо устройств в автомобиле.
Также если закоротить ножки 6 и 7, как на схеме в видео (ниже) то таймер будет срабатывать и тут же переходить в первоначальное состояние. В итоге он будет циклично срабатывать вновь и вновь, по истечению времени зарядки конденсатора и его разрядки. Иногда на микросхеме NE 555, так выполняют электронные реле указателя поворотов. Если же ножки 6 и 7 будут разомкнуты, то таймер сработает один раз и на этом «остановится».
Последнее о чем хотелось сказать, так это о том, что будьте внимательны при монтаже. Подключайте все и вся только проверив все выводы и контакты схемы. Так как микросхема NE 555 сама по себе «нежная», защиты в ней нет, и она просто напросто перегорит. В общем, будьте внимательны и ответственны, тогда у вас все получится!
Использование вывода 5 таймера NE555
Всем известен и широко применяется в радиолюбительских конструкциях таймер NE555 и его аналоги, например, отечественный КР1006ВИ1. В подавляющем большинстве случаев вывод 5 таймера NE555 оставляют свободным или соединяют с общим проводом через блокировочный конденсатор, что в условиях отсутствия помех по питанию не очень нужно. В зарубежных описаниях таймера этот вывод называют по-разному — Cont. Control. Control Voltage, а в отечественных — «Контроль делителя», хотя уместнее было бы перевести слово control как «управление».
Внутри таймера NE555 вывод 5 соединен с точкой соединения «верхнего» и «среднего» резисторов делителя напряжения питания, формирующего пороги срабатывания компараторов и задающего таким образом пределы изменения напряжения на времязадающем конденсаторе Поэтому, когда вывод 5 оставлен свободным, напряжение на нем — 2/3 напряжения питания. Точка соединения «среднего» и «нижнего» резисторов, где напряжение равно 1/3 напряжения питания, внешнего вывода не имеет. Исходя именно из таких порогов, в справочниках приведены формулы расчёта длительности импульсов и частоты их следования на выходе генератора, собранного на таймере. Однако длительностью и частотой можно управлять, не изменяя ёмкость и сопротивление времязадающих элементов, а лишь подавая внешнее напряжение на вывод 5 таймера, сдвигая тем самым пороги срабатывания компараторов. О такой возможности написано в справочных данных таймера, но никаких зависимостей или рекомендаций на эту тому там не приведено. Чтобы восполнить этот пробел, были проведены эксперименты, с результатами которых хочу ознакомить читателей.
На таймере NE555 был собран генератор непрерывных колебаний по схеме, изображенной на рис. 1.
Рис. 1
Если вывод 5 таймера никуда не подключён, коэффициент заполнения генерируемых импульсов (отношение длительности импульсов Т+ к периоду их следования Т) равен 0.5, а частота их следования
При указанных на схеме номиналах элементов F0≈1 кГц.
Внешнее напряжение, поданное на вывод 5, влияет на оба порога Причём верхний порог становится равным этому напряжению, а нижний — его половине. Если подать на вывод 5 напряжение Uупр равное 8 В (2/3 от 12 В), частота и коэффициент заполнения останутся прежними. Но при других значениях Uупр они изменяются, как показано на рис. 2 (частота) и рис. 3 (коэффициент заполнения).
Рис. 2
Рис. 3
Причём частота, увеличиваясь в 3,7 раза при изменении Uупр от 11,5 до 1 В, с дальнейшим его уменьшением резко падает. Коэффициент заполнения растёт с 0,06 (Uупр = 1 В) до 0,77 (Uупр = 11,5 В) практически линейно.
Рис. 4
Другой способ управления состоит в подключении к выводу 5 резистора второй вывод которого соединён с одним из других выводов таймера. Варианты его подключения показаны на рис. 4 а зависимости частоты и коэффициента заполнения от — соответственно на рис. 5 и рис. 6. Буквы у кривых на этих рисунках совпадают с теми, которыми обозначены варианты подключения резистора на рис.4.
Рис. 5
Рис. 6
Как видим, при соединении резистора Rупр с общим проводом и уменьшении его сопротивления от 100 кОм до 470 Ом частота растёт в 1,7 раза, а коэффициент заполнения падает в восемь раз. Если соединить резистор с плюсовой линией питания, при изменении его сопротивления в тех же пределах часто та уменьшается в 2,2 раза, а коэффициент заполнения растёт в 1,5 раза, Наибольшее изменение частоты — в четыре раза достигнуто при соединении резистора Rупр с выходом OUT (выводом 3) таймера, При этом коэффициент заполнения импульсов практически не изменяется, оставаясь приблизительно равным 0,5. Если подключить резистор Rупр к выходу с открытым коллектором DISCH (выводу 7), кривые зависимостей изменения частоты и коэффициента заполнения от сопротивления резистора занимают промежуточные положения между кривыми при его соединении с плюсом питания и с выходом OUT.
Полученные результаты можно распространить и на КМОП-версии таймера — микросхемы LMC555, TS555, ICM7555, КР1441ВИ1. Но следует иметь в виду, что пороговые напряжения в них заданы с помощью делителей напряжения из резисторов сопротивлением 100 кОм, а не 5 кОм, как в таймерах NE555. Поэтому для них значения сопротивления резистора указанные на рис. 5 и рис. 6, нужно увеличить в 20 раз.